DGA Game XMPP Network Protocol
Specification

Zhanat S. Skokbayev

e This section is currently a draft, and is subject to change.

Version: 0.1
Date: 10.01.2026
Description: First publication.

Copyright © 2026 Zhanat S. Skokbayev at The FLEISS Software Foundation

https://www.fleissf.org/

Contents at a Glance

e This section is currently a draft, and is subject to change.

Table of Contents
Document History
Preface

Audience

Legal

Prerequisites

Related Documentation

I18n and L10n

Terminological Conventions
Typographic Conventions

Basic Standards

XMPP Standards
XMPP Guidelines
XMPP Guidelines Notices

XEP-0045: Multi-User Chat
XEP-0196: User Gaming
XEP-xxxx: Multi-User Gaming

XEP-xxxx: DGA Massive Multiplayer Online Gaming

1. Introduction
2. Scope
3. Requirements

4. Terminology

4.1. General Terms

4.2. Room Types
4.3. Room Status

4.4. Match Status
4.5. Dramatis Personae

5. Roles, Affiliations, and Privileges

5.1. Roles

5.1.1. Privileges
5.1.2. Default Roles
5.1.3. Changing Roles

5.2. Matches

5.3. Affiliations
5.3.1. Privileges
5.3.2. Changing Affiliations

6. Entity Use Cases

6.1. Discovering an MMOG Service

6.2. Discovering the Features Supported by an MMOG Service
6.3. Discovering Rooms

6.4. Search for Rooms

6.5. Querying for Room Information

6.6. Querying for Room Items

6.7. Querying a Room Occupant

6.8. Discovering Client Support for MMOG

6.9. Announcing a Running Game

7. Occupant Use Cases

7.1. Order of Events
7.2. Entering a Room

7.2.1. Basic MMOG Protocol
7.2.2. Presence Broadcast
7.2.3. Non-Anonymous Rooms
7.2.4. Semi-Anonymous Rooms

7.2.5. Password-Protected Rooms

7.2.6. Members-Only Rooms
7.2.7. Banned Users

7.2.8. Nickname Conflict

7.2.9. Max Users

7.2.10. Locked Room

7.2.11. Nonexistent Room
7.2.12. Room Logging

7.2.13. Discussion History
7.2.14. Managing Discussion History
7.2.15. Room Subject

7.2.16. Live Messages

7.2.17. Error Conditions
7.2.18. Groupchat 1.0 Protocol

7.3. Occupant Modification of the Room Subject
7.4.Joining a Team

7.5. Match Start

7.6. Move in Match

7.7. Shotin Match

7.8. Loss in Match

7.9. Repair in Match

7.10. Match Resignation

7.11. Match Termination

7.12. Sending a Message to All Occupants
7.13. Sending a Private Message

7.14. Changing Nickname

7.15. Changing Availability Status

7.16. Inviting Another User to a Room

7.16.1 Direct Invitation
7.16.2. Mediated Invitation

7.17. Converting a One-to-One Game Into a Multi-User Game
7.18. Registering with a Room

7.19. Getting the Member List

7.20. Discovering Reserved Room Nickname

7.21. Requesting Voice

7.22. Exiting a Room

8. Moderator Use Cases

8.1. Modifying the Room Subject
8.2. Kicking an Occupant

8.3. Granting Voice to a Visitor

8.4. Revoking Voice from a Participant
8.5. Modifying the Voice List

8.6. Approving Voice Requests

9. Admin Use Cases

9.1. Banning a User

9.2. Modifying the Ban List

9.3. Granting Membership

9.4. Revoking Membership

9.5. Modifying the Member List

9.6. Granting Moderator Status

9.7. Revoking Moderator Status

9.8. Modifying the Moderator List
9.9. Approving Registration Requests

10. Owner Use Cases

10.1. Creating a Room

10.1.1. General Considerations
10.1.2. Creating an Instant Room
10.1.3. Creating a Reserved Room

10.2. Subsequent Room Configuration

10.2.1. Notification of Configuration Changes

10.3. Granting Owner Status
10.4. Revoking Owner Status
10.5. Modifying the Owner List
10.6. Granting Admin Status
10.7. Revoking Admin Status
10.8. Modifying the Admin List
10.9. Room Saving

10.10. Room Loading

10.11. Modifying the Member List
10.12. Revoke and Assign Teams
10.13. Destroying a Room

11. Service Use Cases

11.1. Service Removes User Because of Error Response
11.2. Service Removes User Because of Service Shut Down

12. Status Codes
13. Internationalization Considerations

14. Security Considerations

14.1. User Authentication and Authorization
14.2. End-to-End Encryption

14.3. Privacy

14.4. Information Leaks

14.5. Anonymity

14.6. Denial of Service

14.7. Other Considerations

15. IANA Considerations

16. XMPP Registrar Considerations

16.1. Protocol Namespaces

16.2. Service Discovery Category/Type
16.3. Service Discovery Features

16.4. Well-Known Service Discovery Nodes
16.5. Field Standardization

16.5.1. mmog#register FORM_TYPE
16.5.2. mmog#request FORM_TYPE
16.5.3. mmog#roomconfig FORM_TYPE
16.5.4. mmog#roominfo FORM_TYPE

16.6. Status Codes Registry

16.6.1. Process
16.6.2. Initial Submission

16.7. URI Query Types

16.7.1. join
16.7.2. invite
16.7.3. play

16.8. MMOG Status Codes
16.9. https://xmpp.org/registrar/mmogstatus.xml

17. Business Rules

17.1. Addresses
17.2. Message
17.3. Presence
17.4.1Q

18. Implementation Notes

18.1. Services

18.1.1. Allowable Traffic
18.1.2. Ghost Users

18.2. Clients

18.2.1. IRC Command Mapping
18.2.2. Presence Subscriptions

19. XML Schemas

19.1. http://jabber.org/protocol/mmog

19.2. http://jabber.org/protocol/mmog#user
19.3. http://jabber.org/protocol/mmog#admin
19.4. http://jabber.org/protocol/mmog#owner

20. Acknowledgements

Appendices

A. Document Information

B.

C

D.
E.
F.
G.
H.

XEP-xxxx: Massive Multiplayer Online Gaming
XEP-0045: Multi-User Chat

XEP-0196: User Gaming

XEP-xxxx: Multi-User Gaming

Author Information

XEP-xxxx: Massive Multiplayer Online Gaming
XEP-0045: Multi-User Chat

XEP-0196: User Gaming

XEP-xxxx: Multi-User Gaming

. Legal Notices

Copyright

Permissions
Disclaimer of Warranty
Limitation of Liability
IPR Conformance
Visual Presentation

Relation to XMPP
Discussion Venue
Requirements Conformance

Revision History

XEP-xxxx: Massive Multiplayer Online Gaming
XEP-0045: Multi-User Chat

XEP-0196: User Gaming

XEP-xxxx: Multi-User Gaming

L. Bib(La)TeX Entry

XEP-xxxx: Massive Multiplayer Online Gaming
XEP-0045: Multi-User Chat

XEP-0196: User Gaming

XEP-xxxx: Multi-User Gaming

Glossary of Terms

Bibliography

Sources
Requests For Comments (RFCs)
XMPP Extension Protocols (XEPs)

List of Tables

Table 1: Dramatis Personae

Table 2: Roles

Table 3: Privileges Associated With Roles

Table 4: Initial Role Based on Affiliation

Table 5: Role State Chart

Table 6: Owner Privileges Overview

Table 7: Privileges Associated With Affiliations
Table 8: Affiliation State Chart

Table 9: History Management Attributes

Table 10: Error Conditions for Entering a Room
Table 11: Attributes of Game Matches

Table 12: Attributes of Player Characters

Table 13: Attributes of Non-Player Characters
Table 14: Internal Elements of a Move

Table 15: Internal Elements of a Shot

Table 16: Internal Elements of a Loss

Table 17: Internal Elements of a Repair

Table 18: MMOG Status Codes

Table 19: Revision History of MMOG Status Codes
Table 20: IRC Command Mapping

List of Examples

Example 1. Entity Queries Server for Associated
Example 2. Server Returns Disco Items
Example 3. Entity Queries Gaming Service for MMOG Support via
Example 4. Service Returns Disco Info
Example 5. Entity Queries Chat Service for
Example 6. Service Returns Disco Items
Example 7. Service Returns Limited List of Disco Items
Example 8. Client Requests Search Fields from
Example 9. Service Returns Search Form to
Example 10. User Submits Search
Example 11. Service Returns Search
Example 12. Entity Queries for Information about a Specific Game
Example 13. Room Returns Disco Info

Example 14. Room Returns Extended Disco Info

Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example

10

15. Entity Queries for Items Associated with a Specific Game Room
16. Room Returns Disco Items Result (Items are Public)
17. Room Returns Empty Disco Items Result (Items are Private)
18. Entity Queries Contact Regarding MMOG Support
19. Contact Returns Disco Info Result

20. Entity Queries Contact for Current Rooms
21. Contact Returns Room Query Result

22. User Publishes Gaming Information

23. User Publishes Gaming Information On Exit
24. User Seeks to Enter a Room (Massively Multiplayer Online Gaming)
25. No Nickname Specified

26. Service Sends Match State and Presence from Existing Occupants to New Occupant
27. Service Sends New Occupant’s Presence to All Occupants
28. Service Denies Room Join Because Roomnicks Are Locked Down
29. Service Sends New Occupant’s Presence to New Occupant
30. Service Sends Full JID to All Occupants
31. Service Sends New Occupant’s Presence to New Occupant
32. Service Denies Access Because No Password Provided
33. User Provides Password On Entering a Room
34. Service Denies Access Because User Is Not on Member List
35. Service Denies Access Because User is Banned
36. Service Denies Access Because of Nick Conflict
37. Service Informs User that Room Occupant Limit Has Been Reached
38. Service Denies Access Because Room Does Not (Yet) Exist
39. Service Sends New Occupant’s Presence to New Occupant
40. Delivery of Discussion History

41. Discussion History Message with Original From
42. User Requests Limit on Number of Characters in History
43. User Requests Limit on Number of Messages in History
4. User Requests History in Last 3 Minutes
45. User Requests All History Since the Beginning of the Unix Fra
46. User Requests No History

47. Service Informs New Occupant of Room Subject
48. No Subject

49. User Seeks to Enter a Room (groupchat 1.0)
50. Service Response to groupchat 1.0 join / non-occupant presence update
51. User Wants To Join a Team

52. Service Sends Changed Occupant’s Presence to All Occupant
53. Service Sends Changed Occupants Presence Back To Occupant
54. Service Informs User About Team Conflict
55. Player Sends a Start Message

56. Service Reflects the Start Message

57. Service Informs Player that the Match is Not Ready
58. Service Broadcasts the Start Message to All
59. Occupant Sends a Move in a Game Turn
60. Service Informs Player About an Invalid Turn

Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example

61. Service Denies Turn

62. Service Denies Turn Because of Match Status
63. Service Reflects Turn to All Occupants

64. Occupant sends a Shoot in a Game Turn
65. Occupant Sends a Loss in a Game Turn
66. Occupant Sends a Repair in a Game Turn
67. User Resigns

68. Service Sends Termination Broadcast to All Players
69. Occupant Sends a Message to All Occupants
70. Service Reflects Message to All Occupants

71. Occupant Sends Private Message

72. Recipient Receives the Private Message

73. Occupant Attempts to Send a Message of Type "Groupchat" to a Particular Occupant
74. Occupant Changes Nickname

75. Service Updates Nick

76. Occupant Changes Nickname, Modified by Service
77. Service Denies Nickname Change Because of Nick Conflict
78. Service Denies Nickname Change Because Roomnicks Are Locked Down
79. Occupant Changes Availability Status

80. Service Passes Along Changed Presence to All Occupants
81. Occupant Sends a Mediated Invitation

82. Room Sends Invitation to Invitee on Behalf of Invitor
83. Invitee Declines Invitation

84. Room Informs Invitor that Invitation Was Declined
85. A One-to-One Game

86. Continuing the Game I: User Creates Room
87. Continuing the Game II: Owner Sends History to Room
88. Continuing the Discussion III: Owner Sends Invitations, Including Continue Flag
89. Invitations Delivered

90. Invitee Accepts Invitation, Joins Room, and Receives Presence and History
91. User Requests Registration Requirements

92. Room Does Not Exist

93. User Is Not Allowed to Register

94. User Is Already Registered

95. Service Returns Registration Form

96. User Submits Registration Form

97. Room Returns Conflict Error to User

98. Room Returns Service Unavailable Error to User
99. Room Returns Service Bad Request Error to User
100. Room Informs User that Registration Request Has Been Processed
101. Service Sends Notice of Membership to All Occupants
102. User Requests Reserved Nickname

103. Room Returns Nickname

104. Occupant Requests Voice

105. Occupant Exits a Room

106. Service Sends Self-Presence Related to Departure of Occupant

11

Example 107. Service Sends Presence Related to Departure of Occupant
Example 108. Custom Exit Message
Example 109. Moderator Changes Subject
Example 110. Service Informs All Occupants of Subject Change
Example 111. Client Displays Room Subject Change Message
Example 112. Service Returns Error Related to Unauthorized Subject Change
Example 113. Moderator Sets Empty Subject
Example 114. Moderator Kicks Occupant
Example 115. Service Removes Kicked Occupant
Example 116. Service Informs Moderator of Success
Example 117. Service Informs Remaining Occupants
Example 118. Service Returns Error on Attempt to Kick User With Higher Affiliation
Example 119. Moderator Grants Voice to a Visitor
Example 120. Moderator Grants Voice to a Visitor (With a Reason)
Example 121. Service Informs Moderator of Success
Example 122. Service Sends Notice of Voice to All Occupants
Example 123. Moderator Revokes Voice from a Participant
Example 124. Moderator Revokes Voice from a Visitor (With a Reason)
Example 125. Service Informs Moderator of Success
Example 126. Service Notes Loss of Voice
Example 127. Service Returns Error on Attempt to Revoke Voice from an Admin, Owner, or User with a
Higher Affiliation
Example 128. Moderator Requests Voice List
Example 129. Service Sends Voice List to Moderator
Example 130. Moderator Sends Modified Voice List to Service
Example 131. Service Informs Moderator of Success
Example 132. Service Returns Error on Attempt to Revoke Voice from an Admin, Owner, or User with a
Higher Affiliation
Example 133. Voice Request Approval Form
Example 134. Voice Request Approval Submission
Example 135. Admin Bans User
Example 136. Admin Bans User (With a Reason)
Example 137. Service Informs Admin or Owner of Success
Example 138. Service Removes Banned User
Example 139. Service Informs Remaining Occupants
Example 140. Service Returns Error on Attempt to Ban User With Higher Affiliation
Example 141. Admin Requests Ban List
Example 142. Service Sends Ban List to Admin
Example 143. Admin Sends Modified Ban List to Service
Example 144. Service Informs Admin of Success
Example 145. Admin Grants Membership
Example 146. Admin Grants Membership (With a Reason)
Example 147. Service Informs Admin of Success
Example 148. Service Sends Notice of Membership to All Occupants
Example 149. Admin Revokes Membership
Example 150. Admin Revokes Membership (With a Reason)

12

Example 151. Service Informs Moderator of Success

Example 152. Service Notes Loss of Membership
Example 153. Service Removes Non-Member
Example 154. Admin Requests Member List
Example 155. Service Sends Member List to Admin
Example 156. Admin Sends Modified Member List to Service
Example 157. Service Informs Moderator of Success
Example 158. Service Sends Notice of Loss of Membership to All Occupants
Example 159. Room Sends Invitation to New Member

Example 160. Service Returns Error on Attempt by Mere Member to Invite Others to a Members-Only
Room
Example 161. Service Sends Notice of Membership to All Occupants

Example 162. Admin Grants Moderator Status
Example 163. Admin Grants Moderator Status (With a Reason)
Example 164. Service Informs Admin of Success
Example 165. Service Sends Notice of Moderator Status to All Occupants
Example 166. Admin Revokes Moderator Status
Example 167. Admin Revokes Moderator Status (With a Reason)
Example 168. Service Informs Admin of Success
Example 169. Service Notes Loss of Moderator Status
Example 170. Service Returns Error on Attempt to Revoke Moderator Status from an Admin or Owner
Example 171. Admin Requests Moderator List
Example 172. Service Sends Moderator List to Admin
Example 173. Admin Sends Modified Moderator List to Service
Example 174. Service Informs Admin of Success
Example 175. Service Returns Error on Attempt to Revoke Moderator Status from an Admin or Owner
Example 176. Registration Request Approval Form
Example 177. Service Informs User of Inability to Create a Room
Example 178. User Creates a Room and Signals Support for Multi-User Gaming
Example 179. Service Acknowledges Room Creation
Example 180. Owner Requests Instant Room
Example 181. Owner Requests Configuration Form
Example 182. Service Sends Configuration Form
Example 183. Service Informs Owner that No Configuration is Possible
Example 184. Owner Submits Configuration Form
Example 185. Owner Submits Configuration Form Including a Constructed Match
Example 186. Service Informs New Room Owner of Success
Example 187. Service Informs Owner that Requested Configuration Options Are Unacceptable
Example 188. Owner Cancels Initial Configuration
Example 189. Owner Requests Configuration Form
Example 190. Service Denies Configuration Access to Non-Owner
Example 191. Service Sends Configuration Form to Owner
Example 192. Owner Cancels Subsequent Configuration
Example 193. Service Notes Loss of Admin Affiliation
Example 194 Service Notes Gain of Admin Affiliation to All Users
Example 195. Service Notes Loss of Owner Affiliation

13

Example 196. Service Notes Gain of Owner Affiliation to All Users

Example 197. Configuration Status Code
Example 198. Owner Grants Owner Status
Example 199. Owner Grants Owner Status (With a Reason)
Example 200. Service Informs Owner of Success

Example 201. Service Sends Notice of Owner Status to All Occupants
Example 202. Service Sends Notice of Owner Status to All Occupants

Example 203. Owner Revokes Owner Status
Example 204. Owner Revokes Owner Status (With a Reason)
Example 205. Service Informs Owner of Success
Example 206. Service Notes Loss of Owner Affiliation
Example 207. Owner Requests Owner List
Example 208. Service Sends Owner List to Owner
Example 209. Owner Sends Modified Owner List to Service
Example 210. Service Returns Frror on Attempt by Non-Owner to Modify Owner List
Example 211. Service Informs Owner of Success
Example 212. Owner Grants Admin Privileges
Example 213. Owner Grants Admin Privileges (With a Reason)
Example 214. Service Informs Owner of Success

Example 215. Service Sends Notice of Admin Status to All Occupants
Example 216. Service Sends Notice of Admin Status to All Occupants

Example 217. Owner Revokes Admin Status
Example 218. Owner Revokes Admin Status (With a Reason)
Example 219. Service Informs Owner of Success
Example 220. Service Notes Loss of Admin Affiliation
Example 221. Service Notes Loss of Admin Affiliation
Example 222. Owner Requests Admin List
Example 223. Service Sends Admin List to Owner
Example 224. Owner Sends Modified Admin List to Service
Example 225. Service Returns Error on Attempt by Non-Owner to Modify Admin List
Example 226. Service Informs Owner of Success
Example 227. Owner Saves the Room
Example 228. Service Broadcasts Presence to all Occupants
Example 229. Service Informs Owner of Successful Save Request
Example 230. Owner Requests Loading an Adjourned Room
Example 231. Owner Requests Member List
Example 232. Service Sends Member List to Owner
Example 233. Owner Sends Modified Member List to Service
Example 234. Service Informs Owner of Success
Example 235. Service Sends Notice of Loss of Membership to All Occupants
Example 236. Room Sends Invitation to New Member

Example 237. Service Returns Error on Attempt by Mere Member to Invite Others to a Members-Only
Match

Example 238. Service Sends Notice of Membership to All Occupants
Example 239. Owner Requests List of All Occupants and Assigned Teams
Example 240. Service Sends List of Occupants and Assigned Teams to Owner

14

Example 241. Owner Sends Modified List of Assigned Teams to Service
Example 242. Service Informs Owner of Success

Example 243. Service Sends Notice of Changed Roles to All Occupants
Example 244. Owner Submits Room Destruction Request

Example 245. Service Removes Each Occupant

Example 246. Service Informs Owner of Successful Destruction
Example 247. Service Denies Destroy Request Submitted by Non-Owner
Example 248. MMOG Service Removes User Because of Error

Example 249. MMOG Service Informs Other Occupants of Removal Because of an Error
Example 250. MMOG Service Removes User Because of Service Shutdown
Example 251. Join Action: IRI/URI

Example 252. Join Action: Resulting Stanza

Example 253. Join Action with Password: IRI/URI

Example 254. Join Action with Password: Resulting Stanza

Example 255. Invite Action: IRI/URI

Example 256. Invite Action: Resulting Stanza(s)

Example 257. Invite Action With Multiple Invitees: IRI/URI

Example 258. Invite Action With Multiple Invitees: Resulting Stanza
Example 259. Invite Action With Password: IRI/URI

Example 260. Invite Action With Password: Resulting Stanza(s)
Example 261. Play Action: IRI/URI

Example 262. Play Action: Resulting Stanza

Example 263. Play Action with Game: IRI/URI

Example 264. Play Action: IRI/URI

Example 265. Play Action with Password: Resulting Stanza

Example 266. User Queries Service Regarding Allowable Namespaces
Example 267. Service Returns Allowable Namespaces

Example 268. Service Returns Service Unavailable

Document History

e This section is currently a draft, and is subject to change.

Version Date Description Author
0.0.1 24.03.2019 First draft. Zhanat S.
Skokbayev
0.0.2 01.09.2019 First presentation. Zhanat S.
Skokbayev
0.1 10.01.2026 First publication. Zhanat S.
Skokbayev

16

mailto:zss@fleissf.org
mailto:zss@fleissf.org
mailto:zss@fleissf.org

Preface

e This section is currently a draft, and is subject to change.

DGA Game XMPP Network Protocol Specification (‘the Specification’) defines matters and guidelines for the
DGA Game XMPP Network Protocol (‘the Network Protocol), which is an XMPP protocol extension for a
game called 'DGA Distant Ground Attack' ('DGA, 'the DGA Game', or simply 'the Game").

This chapter introduces common topics related to the Specification.

Audience

The Specification is intended to be read by programmers, artists, testers, producers, managers, players, and
everybody else involved in design, development, testing, and use of the Game. However, software
developers, programmers, and architects are the primary audience of the Specification.

Legal

This documentation and the accompanying materials are made available under the terms of the GNU Free
Documentation License, which is available at https://www.gnu.org/licenses/fdl.html.

SPDX-License-Identifier: GFDL-1.3-or-later

Java and Java EE are registered trademarks of Oracle and/or its affiliates.

Jakarta EE, GlassFish, and Eclipse IDE are registered trademarks of Eclipse Foundation.

Payara, Payara Server and its logos are a trademark of Payara Foundation.

Apache, Apache NetBeans, NetBeans IDE, and Maven are trademarks of The Apache Software Foundation.
DGA DISTANT GROUND ATTACK® and its logo are registered trademarks of Zhanat S. Skokbayev at The
FLEISS Software Foundation.

All other trademarks, logos, and featured content are property of their respective owners.

Prerequisites

XMPP is a protocol for streaming XML elements over a network in order to exchange structured yet
extensible data in near-real-time. We assume that you are familiar with the very basics of computer
networking, common Internet applications (such as email and the World Wide Web), and structured data
formats (such as HTML). The first place to start here is The XMPP Standards Foundation’s website.

The DGA Game is based on the Java Platform and written in the Java™ Programming Language. DGA’S
software architecture is closely related to the Java Platform’s technologies. If you are new to Java, spend
some time getting up to speed on the language and platform; a good place to start is dev.java/learn.

Also, each topic in this Specification provides some background information, but in general, we assume you
have a basic knowledge of the technologies each Java Platform’s feature works with. Another field
important for understanding the Specification is game development. We assume that you have some basic
understanding in these fields.

17

https://www.gnu.org/licenses/fdl.html
https://spdx.org/licenses
https://www.oracle.com/
https://www.eclipse.org/
https://www.payara.fish/
https://www.apache.org/
https://www.fleissf.org/
https://xmpp.org/about/technology-overview
https://dev.java/learn

Related Documentation

For more related information, see the following documents of the Game:

® DGA Game Concepts Guide specifies design concepts and guidelines of the DGA Game.

®* DGA Game Architecture Guide provides all necessary information about DGA’s systems, software, and
network architectures.

® DGA Game Design Guide details DGA Game Concepts Guide and serves as a blueprint from which the Game
is being built.

Internationalisation and Localisation

From the beginning, DGA is implemented as an internationalised computer software addressed to the global
audience and international markets. The following locale is default for the DGA Game and its projects:

Locale Name Description

en-EU English in the European The English language as it is accepted in the European Union
Union (European English, EU as the shared standard usage of Ireland and the United
English). Kingdom. As a general rule, Irish/British English is preferred,

and Americanisms that are liable not to be understood by
speakers of Irish/British English should be avoided.
However, bearing in mind that a considerable proportion of
the target readership may be made up of non-native
speakers, very colloquial Irish/British usage should also be
avoided. Although, the International System of Units (SI
System) is used by default. (EU Language Rules; EU
Guidelines for Translating into English)

At the same time, DGA is intended to be localised for as many languages and countries as possible. DGA
strives to communicate with every player in his/her native language or in a language of his/her preference.
Nevertheless, this communication has to be well implemented.

Since the Network Protocol is based on XSF’s standards written in American English, the Specification
follows the style of the original language whenever appropriate.

Terminological Conventions

Throughout this document, we use the following terminological conventions:

Massive Vs. Massively Multiplayer Online Game

Massive versus Massively Multiplayer Online Game (MMOG) is a highly debatable topic. Laying aside the
aspect of grammar, we prefer expanding MMOG as Massive Multiplayer Online Game because it
represents a more general notion. The word massive refers to a multiplayer online game, which can be
not only massively multiplayer (i.e. massive in quantity of players acting within the same online game
world), but also huge in functionality, gameplay, network capabilities, virtual economy, and other
parameters of the game. Whereas, the form massively multiplayer indicates only that there are numerous
players in the game, i.e. this form has a more narrow meaning. Moreover, a massive multiplayer game can

18

https://www.fleissf.org/dga/docs/dga-game-concepts-guide/current/index.html
https://www.fleissf.org/dga/docs/dga-game-concepts-guide/current/index.html
https://european-union.europa.eu/principles-countries-history/languages_en
https://commission.europa.eu/resources-partners/translation-and-drafting-resources/guidelines-translation/guidelines-translating-english_en

be either massively multiplayer or not. The modern game encyclopedias allow both forms, although they
use massively multiplayer in the narrow, specific sense. (ECGG, p. 596)

Typographic Conventions

Throughout this document, we use the following typographic conventions:

Convention

Boldface

Italic

Monospace

very important

(Book, page)

Meaning

Boldface type indicates a new term
defined in text below or in the glossary.
Also it marks graphical user interface
elements associated with an action.

Italic type indicates book titles,
emphasis, terms in the text or
placeholder variables for which you
supply particular values.

Monospace type indicates the names of
files and directories, commands within
a paragraph, URLs, code in examples,
text that appears on the screen, or text
that you enter.

Underlined type indicates texts of
especial importance.

Letter code and number in round
brackets indicates the index of a text
resource through the Bibliography and
the page number(s) within the text.

Example

Heaven signifies night and day, cold
and heat, times and seasons.

From the File menu, choose Open
Project.

Read Chapter 6 in the User’s Guide.
Do not save the file.

The command to remove a file is rm
filename.

Edit your .login file.

Use 1s -a to list all files.
machine_name% you have mail.
The Commander stands for the

virtues of wisdom, sincerity,
benevolence, courage and strictness.

(ECGG, p. 319)

(XTDG, pp. 27-29)

19

Basic Standards

e This section is currently a draft, and is subject to change.

The Network Protocol is based on the XMPP Protocol (Extensible Messaging and Presence Protocol), which
is maintained by the XMPP Standards Foundation (XSF) and Internet Engineering Task Force (IETF).

XMPP Standards

The Network Protocol is defined by the following basic XSF and IETF’s standards (Request for Comments,
RFO):

1. RFC 6120 'Extensible Messaging and Presence Protocol (XMPP): Core', which specifies the XMPP
Protocol as an application profile of the Extensible Markup Language (XML) that enables the near-real-
time exchange of structured yet extensible data between any two or more network entities. This
document defines XMPP’s core protocol methods: setup and teardown of XML streams, channel
encryption, authentication, error handling, and communication primitives for messaging, network
availability (‘presence’), and request-response interactions. This document obsoletes RFC 3920.

2. RFC 6121 'Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence’, which
specifies extensions to core features of the XMPP Protocol that provide basic instant messaging (IM)
and presence functionality in conformance with the requirements in RFC 2779. This document obsoletes
RFC 3921.

3. RFC 7395 'An Extensible Messaging and Presence Protocol (XMPP) Subprotocol for WebSocket', which
specifies a binding for the XMPP Protocol over a WebSocket transport layer. A WebSocket binding for
XMPP provides higher performance than the current HTTP binding for XMPP.

4. RFC 7590 'Use of Transport Layer Security (TLS) in the Extensible Messaging and Presence Protocol
(XMPP)', which specifies the use of Transport Layer Security (TLS) in the XMPP Protocol. This document
updates RFC 6120.

5. RFC 7622 'Extensible Messaging and Presence Protocol (XMPP): Address Format', which specifies the
address format for the XMPP Protocol, including support for code points outside the ASCII range. This
document partially obsoletes RFC 6122.

XMPP Guidelines

The Specification is arranged according to the following XSF’s standard guidelines (XMPP Extension
Protocols, XEP):

1. XEP-0001 "XMPP Extension Protocols', which defines the standards process followed by the XMPP
Standards Foundation.

2. XEP-0134 'XMPP Design Guidelines', which defines best practices for the intelligent design of
Jabber/XMPP protocols and other XMPP extensions.

3. XEP-0143 'Guidelines for Authors of XMPP Extension Protocols’, which provides information intended
to assist authors of XMPP Extension Protocols.

20

XEP-0045 'Multi-User Chat', which specifies an XMPP protocol extension for multi-user text chat,
whereby multiple XMPP users can exchange messages in the context of a room or channel, similar to
Internet Relay Chat (IRC). In addition to standard chatroom features such as room topics and
invitations, the protocol defines a strong room control model, including the ability to kick and ban
users, to name room moderators and administrators, to require membership or passwords in order to
join the room, etc.

5. XEP-0196 'User Gaming', which specifies an XMPP protocol extension for communicating information
about the games a user plays.

6. XEP-xxxx 'Multi-User Gaming', which specifies an XMPP protocol extension for multi-user gaming.

XMPP Guidelines Notices

The Specification gives credit to the notices of the following XMPP Extension Protocols the DGA Game XMPP
Network Protocol is based on.

XEP-0045: Multi-User Chat
€€

Abstract This specification defines an XMPP protocol extension for multi-user text
chat, whereby multiple XMPP users can exchange messages in the
context of a room or channel, similar to Internet Relay Chat (IRC). In
addition to standard chatroom features such as room topics and
invitations, the protocol defines a strong room control model, including
the ability to kick and ban users, to name room moderators and
administrators, to require membership or passwords in order to join the
room, etc.

Authors Peter Saint-Andre
Copyright © 2002 - 2024 XMPP Standards Foundation.
Status Stable

NOTICE: The protocol defined herein is a Stable Standard of the
XMPP Standards Foundation. Implementations are encouraged
and the protocol is appropriate for deployment in production
systems, but some changes to the protocol are possible before it

becomes a Final Standard.

Type Standards Track

Version 1.35.1 (2024-09-17)

XEP-0196: User Gaming
€€

21

Abstract

Authors
Copyright

Status

Type

Version

This document defines an XMPP protocol extension for communicating
information about the games a user plays.

Peter Saint-Andre
© 2006 — 2008 XMPP Standards Foundation.
Deferred

WARNING: This document has been automatically Deferred after
12 months of inactivity in its previous Experimental state.
Implementation of the protocol described herein is not
recommended for production systems. However, exploratory

implementations are encouraged to resume the standards process.
Standards Track

0.3 (2008-09-25)

XEP-xxxx: Multi-User Gaming

€€

22

Abstract

Authors
Copyright

Status

Type

Version

This document defines an XMPP protocol extension for multi-user
gaming.

Torsten Grote, Arne Konig, Gtinther Niefs
© 2008 — 2009 XMPP Standards Foundation.
ProtoXEP

WARNING: This document has not yet been accepted for
consideration or approved in any official manner by the XMPP
Standards Foundation, and this document is not yet an XMPP
Extension Protocol (XEP). If this document is accepted as a XEP
by the XMPP Council, it will be published at
https://xmpp.org/extensions/ and announced on the

<standards@xmpp.org> mailing list.
Standards Track

0.0.3 (2009-04-20)

https://xmpp.org/extensions/
mailto:standards@xmpp.org

XEP-xxxx
DGA MMOG

e This section is currently a draft, and is subject to change.

€€

Abstract This document defines an XMPP protocol extension for the DGA MMORPG
Game Network Protocol.

Authors Zhanat S. Skokbayev

Copyright © 2026 Zhanat S. Skokbayev at The FLEISS Software Foundation.
SEE LEGAL NOTICES.

Status ProtoXEP

WARNING: This document has not yet been accepted for
consideration or approved in any official manner by the XMPP
Standards Foundation, and this document is not yet an XMPP
Extension Protocol (XEP). If this document is accepted as a XEP
by the XMPP Council, it will be published at
https://xmpp.org/extensions/ and announced on the

<standards@xmpp.org> mailing list.
Type Standards Track

Version 0.1 (2026-01-10)

1. Introduction

Next generation of communication networks provides sufficient capabilities to implement XMPP for
massive multiplayer online games. A massive multiplayer online game (MMOG) refers to video games that
allow a large number of players, typically from hundreds to thousands, to participate simultaneously over
Internet connections on the same game server. These games usually feature complex gameplay, network
capabilities, virtual economy, and other functionalities on a large scale. Still, XMPP mostly lacks this kind of
support. Therefore, this document (Massive Multiplayer Online Gaming or MMOG) describes an extension
protocol for MMO game playing over XMPP.

The Network Protocol is designed as self-sufficient to play this kind of games. Its basic mechanics are
completely based on the specification of XEP-0045 'Multi-User Chat' (MUC) intended for many-to-many chat
messaging. Traditionally, instant messaging is thought to consist of one-to-one chat rather than many-to-
many chat, which is called variously "groupchat” or "text conferencing". Groupchat functionality is familiar

23

https://www.fleissf.org/
https://xmpp.org/extensions/
mailto:standards@xmpp.org

from systems such as Internet Relay Chat (IRC) and the chatroom functionality offered by popular consumer
IM services. The Jabber/XMPP community developed and implemented a basic groupchat protocol as long
ago as 1999. That "groupchat 1.0" (GC) protocol provided a minimal feature set for chat rooms but was rather
limited in scope. This specification is not compatible to the groupchat 1.0 protocol, but provides advanced
features such as invitations, room moderation and administration, and specialized room types.

The MMOG protocol also integrates the specifications of XEP-xxxx 'Multi-User Gaming' (MUG) and XEP-0196
'User Gaming' extension protocols. The MUG protocol has been conceived as not sufficient to play games; it
just describes a basic protocol framework, which game-specific protocols can use. The User Gaming protocol
specifies an extended presence payload format that communicates information about the games a user

plays.
2. Scope

This document addresses common requirements related to configuration of, participation in, and
administration of individual text-based conference rooms. All of the requirements addressed herein apply
at the level of the individual room and are "common" in the sense that they have been widely discussed
within the Jabber/XMPP community or are familiar from existing text-based conference environments (e.g.,
Internet Relay Chat as defined in RFC 1459 and its successors: RFC 2810, RFC 2811, RFC 2812, RFC 2813).

This document explicitly does not address the following:

¢ Relationships between rooms (e.g., hierarchies of rooms).

* Management of multi-user chat services (e.g., managing permissions across an entire service or
registering a global room nickname); such use cases are specified in Service Administration (XEP-0133).

® Moderation of individual messages.
* Encryption of messages sent through a room.

* Advanced features such as attaching files to a room, integrating whiteboards, and using MMOG rooms as
a way to manage the signalling for multi-user audio or video conferencing (see Multiparty Jingle in XEP-
0272).

¢ Interaction between MMOG deployments and foreign chat systems (e.g., gateways to IRC or to legacy IM
systems).

® Mirroring or replication of rooms among multiple MMOG deployments.

This limited scope is not meant to disparage such topics, which are of inherent interest; however, it is meant
to focus the discussion in this document and to present a comprehensible protocol that can be implemented
by client and service developers alike. Future specifications might address the topics mentioned above.

3. Requirements

This document addresses the minimal functionality provided by Jabber-based multi-user chat services that
existed in 2002 when development of MUC began. This design is based on the original groupchat 1.0
protocol, with the result that:

* FEach room is identified as a "room JID" <room@service> (e.g., <jdev@conference.jabber.org>), where
"room" is the name of the room and "service" is the hostname at which the multi-user chat service is
running.

24

mailto:jdev@conference.jabber.org

Each occupant in a room is identified as an "occupant JID" <room@service/nick>, where "nick" is the
room nickname of the occupant as specified on entering the room or subsequently changed during the

occupant’s visit.
A user enters aroom (i.e., becomes an occupant) by sending directed presence to <room@service/nick>.

An occupant can change his or her room nickname and availability status within the room by sending
presence information to <room@service/newnick>.

Messages sent within multi-user chat rooms are of a special type "groupchat" and are addressed to the
room itself (room@service), then reflected to all occupants.

An occupant exits a room by sending presence of type "unavailable" to its current <room@service/nick>.

The additional features and functionality addressed in MUC include the following:

10.

11.

12.

13.

14.

native conversation logging (no in-room bot required)

. enabling users to request membership in a room

. enabling occupants to view an occupant’s full JID in a non-anonymous room

. enabling moderators to view an occupant’s full JID in a semi-anonymous room
. allowing only moderators to change the room subject

. enabling moderators to kick participants and visitors from the room

. enabling moderators to grant and revoke voice (i.e., the privilege to speak) in a moderated room, and to

manage the voice list

. enabling admins to grant and revoke moderator status, and to manage the moderator list

. enabling admins to ban users from the room, and to manage the ban list

enabling admins to grant and revoke membership privileges, and to manage the member list for a
members-only room

enabling owners to configure various room parameters (e.g., limiting the number of occupants)
enabling owners to specify other owners
enabling owners to grant and revoke admin status, and to manage the admin list

enabling owners to destroy the room

In addition, this document provides protocol elements for supporting the following room types:

. public vs. hidden

. persistent vs. temporary

. password-protected vs. unsecured
. members-only vs. open

. moderated vs. unmoderated

. on-anonymous Vs. semi—anonymous

25

The extensions needed to implement these requirements are qualified by the
'http://jabber.org/protocol/mmog' namespace (and the #owner, #admin, and #user fragments on the main
namespace URI).

4. Terminology

4.1. General Terms

Affiliation

A long-lived association or connection with a room; the possible affiliations are "owner", "admin’,
"member”, and "outcast", whereas "none" represents no affiliation; affiliation is distinct from role. An
affiliation lasts across a user’s visits to a room.

Ammunition

Ammunition (informally ammo) is the material fired, scattered, dropped or detonated from any weapon.

Angular velocity

Angular velocity refers to how fast an object rotates or revolves relative to another point, i.e. how fast
the angular position or orientation of an object changes with time. There are two types of angular
velocity: orbital angular velocity and spin angular velocity. Spin angular velocity refers to how fast a rigid
body rotates with respect to its centre of rotation. Orbital angular velocity refers to how fast a point
object revolves about a fixed origin, i.e. the time rate of change of its angular position relative to the
origin. Spin angular velocity is independent of the choice of origin, in contrast to orbital angular velocity
which depends on the choice of origin.

Angular velocity is measured in angle per unit time, e.g. radians per second (angle replacing distance from
linear velocity with time in common). The SI unit of angular velocity is expressed as radians per second
with the radian having a dimensionless value of unity, thus the SI units of angular velocity are listed as 1/s
or s-1. Angular velocity is usually represented by the symbol w (omega), sometimes . By convention,
positive angular velocity indicates counter-clockwise rotation, while negative is clockwise.

Ban

To remove a user from a room such that the user is not allowed to re-enter the room (until and unless the
ban has been removed). A banned user has an affiliation of "outcast".

Bare JID

The <user@host> by which a user is identified outside the context of any existing session or resource;
contrast with Full JID and Occupant JID.

Battle Royale Match (BRM)

A type of matches while a match is starting in a room when there are at least two players waiting for it,
but the match does not finish until the last player stays in the match for some time and other players were
destroyed. If another player enters the match at this moment then the battle continues. Players can battle
in the match each against other personally or within their proper teams. According to this property there
are two subtypes of battle royale matches:

1. Last-Man-Standing Match (LMSM)

2. Last-Team-Standing Match (LTSM).

26

Character

A character (sometimes known as a fictional character) is a person or other being in a narrative (such as a
novel, play, television series, film, or video game). In video games characters are represented in two
essential forms: player characters (PCs) and non-player characters (NPCs).

Defeat

An act of being defeated by the opponent players or teams in a match. Being defeated means that
opponent players physically destroyed (damaged) this player, these players, their team, or the opponent
players managed to achieve some set of victorious requirements.

Full JID

The <user@host/resource> by which an online user is identified outside the context of a room; contrast
with Bare JID and Occupant JID.

Game

In general sense, a game is a structured form of play, contest, competition, usually undertaken for
entertainment or fun, and sometimes used as an educational tool. In a more specific sense, a game is a XEP
which defines the rules of a match.

Gamefield

An area, place, location where a game match is being conducted. If the game’s rules suppose an open
conflict between players then "gamefield" is the synonym for "battlefield".

Groupchat (GC)

The minimal "groupchat 1.0" protocol developed within the Jabber community in 1999; old versions of
MUC were backwards-compatible with GC.

History

A limited number of message stanzas sent to a new occupant to provide the context of current room or
match.

Initiator

The entity that started a game.

Invitation

A special message sent from one user to another asking the recipient to join a room; the invitation can be
sent directly (see XEP-0249) or mediated through the room (as described under Inviting Another User to a
Room).

IRC
Internet Relay Chat.

Kick
To temporarily remove a participant or visitor from a room; the user is allowed to re-enter the room at
any time. A kicked user has a role of "none".

Linear Velocity

27

Velocity is the rate of change in the position of an object in a specific range of time. When the object
moves along the straight path, the velocity associated with it is termed as linear velocity. It is given as the
ratio of distance covered to time:

V = Xx/t, where,

v - linear velocity,

X - distance covered,

t - time taken to cover the distance x.

Logging

Storage of discussions that occur within a room for public retrieval outside the context of the room.

Match

Represents a specific instance of a game played in a room.

Match Type

A category of matches having a common set of characteristics.

Member

A user who is on the "whitelist" for a members-only room or who is registered with an open room. A
member has an affiliation of "member".

Moderator

A room role that is usually associated with room admins but that can be granted to non-admins; is
allowed to kick users, grant and revoke voice, etc. A moderator has arole of "moderator".

MUC

The multi-user chat protocol for text-based conferencing.

MUG

The multi-user gaming protocol for a game playing over XMPP.

MMOG

The multi-user gaming protocol for a massive multi-player online game, which is played over XMPP,
especially designed to be played simultaneously by a large number of players and has complex gameplay;,
network capabilities, virtual economy;, etc.

Multi-Session Nick

If allowed by the service, a user can associate more than one full JID with the same occupant JID (e.g., the
user richardllI@yorklit is allowed to log in simultaneously as the nick "King” in the
characters@thewarsoftheroses.shakespeare.lit game room from both richardIlI@york.lit/berwick and
richardIlI@york.lit/bosworth). Multi-session nicks are not currently defined in this document.

Node

A node defines an internal and integral part of a character. Nodes represent different parts the character
consists of, and they are used to describe the character’s position, state, etc.

Non-Player Character (NPC)

28

A non-player character (NPC) is any character in a game which is not controlled by a player. In video
games this usually means a character controlled by the computer (instead of the player) that has a
predetermined set of behaviours that potentially will impact game play, but not necessarily be true
artificial intelligence.

Occupant

Any user who is in a room (this is an "abstract class" and does not correspond to any specific role). An
occupant can become a player or spectator within a match.

Occupant JID

The <room@service/nick> by which an occupant is identified within the context of a room; contrast with
Bare JID and Full JID.

Owner

A privileged entity that owns a game.

Outcast

A user who has been banned from a room. An outcast has an affiliation of "outcast".

Participant

An occupant who does not have admin status; in a moderated room, a participant is further defined as
having voice (in contrast to a visitor). A participant has a role of "participant".

Player

A user in a match who has a defined game team.

Player Character (PC)

A player character (also known as PC and playable character) is a fictional character in a video game
whose actions are directly controlled by a player of the game rather than the rules of the game. The
characters that are not controlled by a player are called non-player characters (NPCs).

Private Message

A message sent from one occupant directly to another’s occupant JID (not to the room itself for
broadcasting to all occupants).

Role

A temporary position or privilege level within a room, distinct from a user’s long-lived affiliation with the

o "o

room; the possible roles are "moderator”, "participant”, and "visitor", "none" for no defined role. A role
lasts only for the duration of an occupant’s visit to a room.

Room

A virtual space that users figuratively enter in order to play matches with other users.

Room Administrator

A user empowered by the room owner to perform administrative functions such as banning users;
however, a room administrator is not allowed to change the room configuration or to destroy the room.
An admin has an affiliation of "admin".

29

Room ID

The localpart of a Room JID, which might be opaque and thus lack meaning for human users (see under
Business Rules for syntax); contrast with Room Name.

Room JID

The <room@service> address of a room.

Room Name

A user-friendly, natural-language name for a room, configured by the room owner and presented in
Service Discovery queries; contrast with Room ID.

Room Nickname

The resource part of an Occupant JID (see Business Rules for syntax); this is the "friendly name" by which
an occupant is known in the room.

Room Owner

The user who created the room or a user who has been designated by the room creator or owner as
someone with owner status (if allowed); an owner is allowed to change the room configuration and
destroy the room, in addition to all admin status. An owner has an affiliation of "owner".

Room Roster

A client’s representation of the matches and occupants in a room.

Server

An XMPP server that may or may not have associated with it a gaming service.

Service

A host that offers gaming capabilities; often but not necessarily a sub-domain of an XMPP server (e.g.,
mmog.jabber.org).

Single Battle Match (SBM)

A type of matches while a match is starting in a room only when a list of players according to some set of
requirements has been completed. The battle match is finishing when the player(s) of a team destroyed
the last player(s) of the opposing team(s) or when the team achieved some set of victorious requirements
(the team wined / gained a victory and defeated other teams).

Spectator

An occupant who does not actually plays games but watches them. Spectators do not have voice (in
contrast to players).

Subject

A temporary gaming topic within a room.

Team

A side which a player belongs to within a match. For example, it can be "black" and "white" as in chess,
"Montecchi" and "Capuleti", "proponent” and "opponent", and S0 on.

30

The team "all" is a reserved name for querying the list of active players and MUST NOT be redefined by
games for other purposes.

Victory

An act of defeating the opponent players or teams in a match. Defeating means that opponent players
were physically destroyed (damaged) or some set of victorious requirements has been achieved.

Visit
A user’s "session" in a room, beginning when the user enters the room (i.e., becomes an occupant) and
ending when the user exits the room.

Visitor
In a moderated room, an occupant who does not have voice (in contrast to a participant). A visitor has a
role of "visitor".

Voice

In a moderated room, the privilege to send messages to all occupants.

Weapon

A weapon, arm or armament is any implement or device that can be used with intent to inflict damage or
harm.

4.2. Room Types

Fully-Anonymous Room

A room in which the full JIDs or bare JIDs of occupants cannot be discovered by anyone, including the
room owner; contrast with Non-Anonymous Room and Semi-Anonymous Room.

Hidden Room

A room that cannot be found by any user through normal means such as searching and service discovery;
antonym: Public Room.

Members-Only Room

Aroom that a user cannot enter without being on the member list; antonym: Open Room.

Moderated Room

A room in which only those with "voice" are allowed to send messages to all occupants; antonym:
Unmoderated Room.

Non-Anonymous Room

A room in which an occupant’s full JID is exposed to all other occupants, although the occupant can
request any desired room nickname; contrast with Semi-Anonymous Room and Fully-Anonymous Room.

Open Room

A room that non-banned entities are allowed to enter without being on the member list; antonym:
Members-Only Room.

Password-Protected Room

31

A room that a user cannot enter without first providing the correct password; antonym: Unsecured
Room.

Persistent Room

A room that is not destroyed if the last occupant exits; antonym: Temporary Room.

Public Room

A room that can be found by any user through normal means such as searching and service discovery;
antonym: Hidden Room.

Semi-Anonymous Room

A room in which an occupant’s full JID can be discovered by room admins only; contrast with Fully-
Anonymous Room and Non-Anonymous Room.

Temporary Room

Aroom that is destroyed if the last occupant exits; antonym: Persistent Room.

Unmoderated Room

A room in which any occupant is allowed to send messages to all occupants; antonym: Moderated Room.

Unsecured Room

A room that anyone is allowed to enter without first providing the correct password; antonym:
Password-Protected Room.

4.3. Room Status
There are different room statuses as follows:

Created

A room before the initial room configuration is done.

Active

A room that is currently in use.

Adjourned

A "saved" room, i.e. rooms archived for future notices.
4.4. Match Status
There are different match statuses as follows:

Created

A match before the initial match configuration is done.

Inactive

The status before and after a match, turns are not possible, options can be changed.

Active

The status within a match, turns are possible, options cannot be changed.

32

Paused

The status halted within a match, turns are not possible, options cannot be changed.

Adjourned

A "saved" match, i.e. matches archived for future notices.

4.5. Dramatis Personae

Most of the examples in this Specification use the scenario of King Richard III and Henry Tudor, Earl of
Richmond fought in Act V of Shakespeare’s Richard III, taking place at the Battle of Bosworth Field and
represented here as the "bosworth@games.shakespeare.lit" room. The characters are as follows:

Table 1: Dramatis Personae

Room Nickname Full JID Role Team
king richardiii@shakespeare.lit/desktop Participant York
sirwilliam wcatesby@shakespeare.lit/laptop Participant York
earll harritudur@shakespeare.lit/pda Participant Lancaster
earlofderby thomasstanley@shakespeare.lit/cell Participant Lancaster
queenconsort elizabeth@shakespeare.lit/tablet Participant None
hastings whastings@shakespeare.lit/smartphone Participant None
buckingham buckingham@shakespeare.lit/notebook Participant None

5. Roles, Affiliations, and Privileges

A user might be allowed to perform any number of actions in a room, from joining or sending a message to
changing configuration options or destroying the room altogether. We call each permitted action a
"privilege". There are two ways we might structure privileges:

1. Define each privilege atomically and explicitly define each user’s particular privileges; this is flexible but
can be confusing to manage.

2. Define bundles of privileges that are generally applicable and assign a user-friendly "shortcut" to each

bundle (e.g., "moderator"” or "admin”).

MMOG takes the second approach.

MMOG also defines two different associations: long-lived affiliations and session-specific roles. These two
association types are distinct from each other in MMOG, since an affiliation lasts across visits, while a role
lasts only for the duration of a visit. In addition, there is no one-to-one correspondence between roles and
affiliations; for example, someone who is not affiliated with a room may be a (temporary) moderator, and a
member may be a participant or a visitor in a moderated room. These concepts are explained more fully
below.

5.1. Roles

The following roles are defined:

33

mailto:bosworth@games.shakespeare.lit

Table 2: Roles

Name Support

Moderator REQUIRED

None N/A (the absence of arole)
Participant REQUIRED

Visitor RECOMMENDED

Roles are temporary in that they do not necessarily persist across a user’s visits to the room and MAY change
during the course of an occupant’s visit to the room. An implementation MAY persist roles across visits and
SHOULD do so for moderated rooms (since the distinction between visitor and participant is critical to the
functioning of a moderated room).

There is no one-to-one mapping between roles and affiliations (e.g., a member could be a participant or a
visitor).

A moderator is the most powerful role within the context of the room, and can to some extent manage other
occupants' roles in the room. A participant has fewer privileges than a moderator, although he or she always
has the right to speak. A visitor is a more restricted role within the context of a moderated room, since
visitors are not allowed to send messages to all occupants (depending on room configuration, it is even
possible that visitors' presence will not be broadcasted to the room).

Roles are granted, revoked, and maintained based on the occupant’s room nickname or full JID rather than
bare JID. The privileges associated with these roles, as well as the actions that trigger changes in roles, are
defined below.

Information about roles MUST be sent in all presence stanzas generated or reflected by the room and thus
sent to occupants (if the room is configured to broadcast presence for a given role).

5.1.1. Privileges

For the most part, roles exist in a hierarchy. For instance, a participant can do anything a visitor can do, and a
moderator can do anything a participant can do. Each role has all the privileges possessed by the next-lowest
role, plus additional privileges; these privileges are specified in the following table as defaults (an
implementation MAY provide configuration options that override these defaults).

34

Table 3: Privileges Associated With Roles

Privilege None Visitor = Participant Moderator
Present in Room No Yes Yes Yes
Receive Messages No Yes Yes Yes
Receive Occupant Presence No Yes Yes Yes
Broadcast Presence to All Occupants No Yes* Yes Yes
Change Availability Status No Yes* Yes Yes
Change Room Nickname No Yes* Yes Yes
Send Private Messages No Yes* Yes Yes
Invite Other Users No Yes* Yes* Yes
Send Messages to All No No** Yes Yes
Modify Subject No No* Yes* Yes
Kick Participants and Visitors No No No Yes
Grant Voice No No No Yes
Revoke Voice No No No Yes***

* Default; configuration settings MAY modify this privilege.
** An implementation MAY grant voice by default to visitors in unmoderated rooms.

*** A moderator MUST NOT be able to revoke voice privileges from an admin or owner.

5.1.2. Default Roles

The following table summarizes the initial default roles that a service SHOULD set based on the user’s
affiliation (there is no role associated with the "outcast" affiliation, since such users are not allowed to enter
the room).

Table 4: Initial Role Based on Affiliation

Room Type None Member Admin Owner

Moderated Visitor Participant Moderator Moderator
Unmoderated Participant Participant Moderator Moderator
Members-Only N/A* Participant Moderator Moderator
Open Participant Participant Moderator Moderator

* Entry is not permitted.

35

5.1.3. Changing Roles

The ways in which an occupant’s role changes are well-defined. Sometimes the change results from the
occupant’s own action (e.g., entering or exiting the room), whereas sometimes the change results from an
action taken by a moderator, admin, or owner. If an occupant’s role changes, an MMOG service
implementation MUST change the occupant’s role to reflect the change and communicate the change to all
occupants (if the room is configured to broadcast presence from entities with a given role). Role changes
and their triggering actions are specified in the following table.

Table 5: Role State Chart

> None Visitor Participant Moderator
None — Enter moderated Enter Admin or owner
room unmoderated enters room
room

Visitor Exit room or be — Moderator grants ~ Admin or owner
kicked by a voice grants moderator
moderator status

Participant Exit room or be Moderator — Admin or owner
kicked by a revokes voice grants moderator
moderator status

Moderator Exit room or be Admin or owner Admin or owner —

kicked by an
admin or owner*

changes role to changes role to
participant or

revokes

visitor*
moderator status™®

* A moderator SHOULD NOT be allowed to revoke moderation privileges from someone with a higher
affiliation than themselves (i.e., an unaffiliated moderator SHOULD NOT be allowed to revoke moderation
privileges from an admin or an owner, and an admin SHOULD NOT be allowed to revoke moderation
privileges from an owner).

Note: Certain roles are typically implicit in certain affiliations. For example, an admin or
owner is automatically a moderator, so if an occupant is granted an affiliation of admin then
the occupant will by that fact be granted a role of moderator; similarly, when an occupant is
granted an affiliation of member in a moderated room, the occupant automatically has a
role of participant. However, the loss of the admin affiliation does not necessarily mean that
the occupant no longer has a role of moderator (since a "mere" occupant can be a
moderator). Therefore, the role that is gained when an occupant is granted a certain
affiliation is stable, whereas the role that is lost when an occupant loses a certain affiliation is
not hardcoded and is left up to the implementation.

36

5.2. Matches

Owners are allowed to do what they like (saving/loading, change match options, etc.) except in unmoderated
matches. This match type restricts the use of owner privileges to specific room statuses. Users with no
affiliation SHALL NOT enter members-only matches. Besides that, these users have the same privileges as
members.

Table 6: Owner Privileges Overview

Room Type Configure Save/Load Grant Revoke Assign Role Revoke
Member Member Role
moderated inactive all status all status all status all status all status
match
unmoderated inactive inactive all status inactive inactive and inactive and
match paused paused
5.3. Affiliations

The following affiliations are defined:

1. Owner

2. Admin

3. Member

4. Outcast

5. None (the absence of an affiliation)

Support for the owner affiliation is REQUIRED. Support for the admin, member, and outcast affiliations is
RECOMMENDED. (The "None" affiliation is the absence of an affiliation.)

These affiliations are long-lived in that they persist across a user’s visits to the room and are not affected by
happenings in the room. In addition, there is no one-to-one mapping between these affiliations and an
occupant’s role within the room. Affiliations are granted, revoked, and maintained based on the user’s bare
JID, not the nick as with roles.

If a user without a defined affiliation enters a room, the user’s affiliation is defined as "none"; however, this
affiliation does not persist across visits (i.e., a service does not maintain a "none list" across visits).

The member affiliation provides a way for a room owner or admin to specify a "whitelist" of users who are
allowed to enter a members-only room. When a member enters a members-only room, his or her affiliation
does not change, no matter what his or her role is. The member affiliation also provides a way for users to
register with an open room and thus be lastingly associated with that room in some way (one result might
be that the service could reserve the user’s nickname in the room).

An outcast is a user who has been banned from a room and who is not allowed to enter the room.

Information about affiliations MUST be sent in all presence stanzas generated or reflected by the room and
sent to occupants (if the room is configured to broadcast presence from entities with a given role).

37

5.3.1. Privileges

For the most part, affiliations exist in a hierarchy. For instance, an owner can do anything an admin can do,
and an admin can do anything a member can do. Each affiliation has all the privileges possessed by the next-
lowest affiliation, plus additional privileges; these privileges are specified in the following table.

Table 7: Privileges Associated With Affiliations

Privilege Outcast None Member Admin Owner

Enter Open No Yes* Yes Yes Yes
Room

Register with No Yes N/A N/A N/A
Open Room

Retrieve No No Yes Yes Yes
Member List

Enter No No Yes* Yes Yes
Members-Only
Room

Ban Members No No No Yes Yes
and

Unaffiliated

Users

Edit Member No No No Yes Yes
List

Assign and No No No Yes** Yes**
Remove

Moderator

Role

Edit Admin No No No No Yes
List

Edit Owner No No No No Yes
List

Change Room No No No No Yes
Configuration

DestroyRoom No No No No Yes

* As a default, an unaffiliated user enters a moderated room as a visitor, and enters an open room as a
participant. A member enters a room as a participant. An admin or owner enters a room as a moderator.

** As noted, a moderator SHOULD NOT be allowed to revoke moderation privileges from someone with a
higher affiliation than themselves (i.e.,, an unaffiliated moderator SHOULD NOT be allowed to revoke

38

moderation privileges from an admin or an owner, and an admin SHOULD NOT be allowed to revoke
moderation privileges from an owner).

5.3.2. Changing Affiliations

The ways in which a user’s affiliation changes are well-defined. Sometimes the change results from the user’s
own action (e.g., registering as a member of the room), whereas sometimes the change results from an
action taken by an admin or owner. If a user’s affiliation changes, an MMOG service implementation MUST
change the user’s affiliation to reflect the change and communicate that to all occupants (if the room is
configured to broadcast presence from entities with a given role). Affiliation changes and their triggering
actions are specified in the following table.

Table 8: Affiliation State Chart

> Outcast None Member Admin Owner
Outcast — Admin or Admin or Owner adds Owner adds
owner owner adds user to admin user to owner
removes ban user to list list
member list

None Admin or — Admin or Owner adds Owner adds
owner applies owner adds user to admin user to owner
ban user to list list

member list,
or user
registers as
member (if
allowed)

Member Admin or Admin or — Owner adds Owner adds
owner applies ~ owner changes user to admin user to owner
ban affiliation to list list

"none"

Admin Owner applies Owner Owner — Owner adds

ban changes changes user to owner
affiliation to affiliation to list
"none" "member"

Owner Owner applies Owner Owner Owner —
ban changes changes changes

affiliation to affiliation to affiliation to
"none" "member" "admin"
6. Entity Use Cases

An MMOG implementation MUST support Service Discovery (XEP-0030) ("disco"), Service Discovery
Extensions (XEP-0128) and Jabber Search (XEP-0055). Any entity can complete the following disco-related
use cases.

39

6.1. Discovering an MMOG Service

An entity often discovers an MMOG service by sending a Service Discovery items ("disco#items") request to
its own server.

Example 1. Entity Queries Server for Associated Services

<iq from='harritudur@shakespeare.lit/pda’

id='h7ns81g"
to="'shakespeare.lit"'
type="get'>
<query xmlns='http://jabber.org/protocol/disco#items'/>
</iq>

The server then returns the services that are associated with it.

Example 2. Server Returns Disco Items Result

<iq from='shakespeare.lit'
id="h7ns81g"
to="harritudur@shakespeare.lit/pda’
type="result'>
<query xmlns="http://jabber.org/protocol/disco#items'>
<item jid='games.shakespeare.lit'
name='Massively Multiplayer Online Gaming Service'/>

</query>
</iq>

6.2. Discovering the Features Supported by an MMOG Service

An entity may wish to discover if a service implements the Massively Multiplayer Online Gaming protocol; in
order to do so, it sends a service discovery information ("disco#info") query to the MMOG service’s JID.

Example 3. Entity Queries Gaming Service for MMOG Support via Disco

<iq from='harritudur@shakespeare.lit/pda’
id='1x09df27'
to="'games.shakespeare.lit"'

type="get'>
<query xmlns='http://jabber.org/protocol/disco#info'/>
</iq>

The service MUST return its identity and the features it supports.

40

Example 4. Service Returns Disco Info Result

<iq from='games.shakespeare.lit'
id="1x09df27"'
to="harritudur@shakespeare.lit/pda'’
type='result'>
<query xmlns='http://jabber.org/protocol/disco#info'>
<identity
category="'game'
name='Massively Multiplayer Online Gaming Service'
type='multi-user'/>
<feature var="'jabber:iq:search'/>
<feature var='http://jabber.org/protocol/mmog'/>
<feature var='http://jabber.org/protocol/mmog/dga'/>
</query>
</ig>

6.3. Discovering Rooms

The service discovery items ("disco#items") protocol enables an entity to query a service for a list of
associated items, which in the case of a game service would consist of the game rooms hosted by the service.

Example 5. Entity Queries Chat Service for Rooms

<iq from='harritudur@shakespeare.lit/pda’
id="'zb8q41f4"
to="'games.shakespeare.lit'

type="get'>
<query xmlns="http://jabber.org/protocol/disco#items'/>
</iq>

The service SHOULD return a full list of the public rooms it hosts (i.e., not return any rooms that are hidden).

Example 6. Service Returns Disco Items Result

<iq from='games.shakespeare.lit'
id="'zb8q41f4"
to="harritudur@shakespeare.lit/pda'’
type='result'>
<query xmlns='http://jabber.org/protocol/disco#items'>
<item jid='england@games.shakespeare.lit'
name="'england'/>
<item jid='ireland@games.shakespeare.lit'
name='ireland'/>
<item jid='scotland@games.shakespeare.lit'
name='scotland'/>
<item jid='wales@games.shakespeare.lit'
name='wales'/>
</query>
</ig>

If the full list of rooms is large (see XEP-0030 for details), the service MAY return only a partial list of rooms.
If it does so, it SHOULD include a <set/> element qualified by the 'http://jabber.org/protocol/rsm' namespace

41

(as defined in Result Set Management (XEP-0059)) to indicate that the list is not the full result set.

Example 7. Service Returns Limited List of Disco Items Result

<iq from='games.shakespeare.lit'

id="hx51v49s’

to="harritudur@shakespeare.lit/pda’

type='result'>

<query xmlns='http://jabber.org/protocol/disco#items'>

<item jid='buckingham@games.shakespeare.lit'/>

<item jid='cambridgeshire@games.shakespeare.lit'/>

<item jid='clarence@games.shakespeare.lit'/>

<item jid='derby@games.shakespeare.lit'/>

<item jid='dorset@games.shakespeare.lit'/>

<item jid='gloucester@games.shakespeare.lit'/>

<item jid='norfolk@games.shakespeare.lit'/>

<item jid='oxford@games.shakespeare.lit'/>

<item jid='surrey@games.shakespeare.lit'/>

<item jid='york@games.shakespeare.lit'/>

<set xmlns='http://jabber.org/protocol/rsm'>
<first index='0"'>buckingham@games.shakespeare.lit</first>
<last>york@games.shakespeare.lit</last>
<count>37</count>

</set>

</query>
</iq>

6.4. Search for Rooms

It is RECOMMENDED that a user uses Jabber Search (XEP-0055) to search for active or adjourned rooms. At
first the user needs to discover what search fields are supported by the service:

Example 8. Client Requests Search Fields from Service

<iq type='get'
from="'thomasstanley@shakespeare.lit/cell"’
to="'games.shakespeare.lit"'
id="'searchl'
xml:lang="en'>
<query xmlns='jabber:iq:search'/>
</ig>

The service MUST then return the possible search fields to the user, and MAY include instructions:

42

Example 9. Service Returns Search Form to Client

<iq type='result'
from="'games.shakespeare.lit'
to="'thomasstanley@shakespeare.lit/cell"’
id='search1’
xml:lang='en'>
<query xmlns='jabber:iq:search'>
<instructions>
Use the enclosed form to search. If your Jabber client does not
support Data Forms, visit http://web.games.shakespeare.lit/
</instructions>
<x xmlns='jabber:x:data' type='form'>
<title>Room Search</title>
<instructions>
Please provide the following information
to search for active or adjourned matches.
</instructions>
<field type='hidden'
var="'FORM_TYPE"'>
<value>jabber:iq:search</value>
</field>
<field type='text-single'
label="Room Name'
var="mmog#roomsearch_name'/>
<field type='boolean'
label="Saved Rooms'
var="'mmog#roomsearch_saved'/>
<field type='list-single'’
label="Free Game Roles'
var="mmog#roomsearch_roles'>
<option label='1'><value>1</value></option>
<option label='2'><value>2</value></option>
<option label='3'><value>3</value></option>
<option label='4'><value>4</value></option>
<option label='5'><value>5</value></option>
</field>
<field type='list-single’
label="Maximum Number of Occupants’
var="'mmog#roomsearch_max_occupants'>
<option label='1'><value>2</value></option>
<option label='2'><value>3</value></option>
<option label='3'><value>4</value></option>
<option label='4'><value>5</value></option>
<option label='5'><value>10</value></option>
<option label='5'><value>20</value></option>
</field>
<field type='list-single'
label="Game Category'
var="'mmog#roomsearch_category'>
<option label='Role Playing Games'><value>board</value></option>
<option label='Bulletin Board Games'><value>cards</value></option>
</field>
<field type='list-multi'
label="Games"
var="'"mmog#roomsearch_game"'>
<option label='DGA'><value>http://jabber.org/protocol/mmog#dga</value></option>
<option label='DDT'><value>http://jabber.org/protocol/mmog#ddt</value></option>
</field>
</ x>

43

The Saved Room option allows to search for active or adjourned rooms (see Room Status). The Game
Category field is to classify the game and to be able to only search for certain types of games. Every game
protocol MUST define its category in the corresponding game XEP.

After having received the possible search fields, the user MAY then submit a search request, specifying
values for any desired fields:

Example 10. User Submits Search Form

<iq type='set'
from='thomasstanley@shakespeare.lit/cell’
to="'games.shakespeare.lit"'
id="search2'
xml:lang="en'>
<query xmlns='jabber:iq:search'>
<x xmlns='jabber:x:data' type='submit'>
<field type='hidden' var='FORM_TYPE'>
<value>jabber:iq:search</value>
</field>
<field var='status'>
<value>active</value>
</field>
<field var='game'>
<value>http://jabber.org/protocol/mmog/dga</value>
</field>
</x>
</query>
</iq>

The submitting entity MAY submit the 'category' or 'game' field but MUST NOT submit both. Sending an
empty form adds up to searching for all games.

The service SHOULD then return a list of search results that match the values provided:

Example 11. Service Returns Search Results

<iq type='result'
from="'games.shakespeare.lit'
to="'thomasstanley@shakespeare.lit/cell"’
id='search2'
xml:lang='en'>
<query xmlns='jabber:iq:search'>
<x xmlns='jabber:x:data' type='result'>
<field type='hidden' var='FORM_TYPE'>
<value>jabber:iq:search</value>
</field>
<reported>
<field var='status' label='Match Status' type='list-single'/>
<field var='category' label='Game Category' type='list-single'/>
<field var='game' label='Game NS' type='text-single'/>
<field var='jid' label='Jabber ID' type='jid-single'/>
</reported>
<item>
<field var='status'><value>active</value></field>
<field var='category'><value>rpg</value></field>
<field var='game'><value>http://jabber.org/protocol/mmog/dga</value></field>
<field var='jid'><value>england@games.shakespeare.lit</value></field>
</item>
</x>
</query>
</ig>

If the full list of rooms is large, the service MAY return only a partial list of rooms. If it does so, it SHOULD
include a <set/> element (as defined in Result Set Management (XEP-0059)) to indicate that the list is not the
full result set.

6.5. Querying for Room Information

Using the disco#info protocol, an entity may also query a specific game room for more detailed information
about the room. An entity SHOULD do so before entering a room in order to determine the privacy and
security profile of the room configuration (see the Security Considerations for details).

Example 12. Entity Queries for Information about a Specific Game Room

<iq from='harritudur@shakespeare.lit/pda’
id="ik3vs715"
to='england@games.shakespeare.lit'

type="get'>
<query xmlns='http://jabber.org/protocol/disco#info'/>
</iq>

The room MUST return its identity and SHOULD return the features it supports:

45

Example 13. Room Returns Disco Info Result

<iq from='england@games.shakespeare.lit'
id='1ik3vs715"'
to="harritudur@shakespeare.lit/pda’
type='result'>
<query xmlns='http://jabber.org/protocol/disco#info'>
<identity
category="game'
name="'england'
type='multi-user'/>
<feature var='http://jabber.org/protocol/mmog'/>
<feature var='http://jabber.org/protocol/mmog/dga'/>
<feature var='http://jabber.org/protocol/mmog#stable_id'/>
<feature var='mmog_passwordprotected'/>
<feature var='mmog_hidden'/>
<feature var='mmog_temporary'/>
<feature var='mmog_open'/>
<feature var='mmog_unmoderated'/>
<feature var='mmog_nonanonymous'/>
</query>
</iq>

Note: The room SHOULD return the materially-relevant features it supports, such as
password protection and room moderation (these are listed fully in the feature registry
maintained by the XMPP Registrar; see also the XMPP Registrar section of this document).

A game room MAY return more detailed information in its disco#info response using Service Discovery
Extensions (XEP-0128), identified by inclusion of a hidden FORM_TYPE field whose value is
"http://jabber.org/protocol/mmog#roominfo". Such information might include a more verbose description
of the room, the current room subject, and the current number of occupants in the room:

46

Example 14. Room Returns Extended Disco Info Result

<iq from='england@games.shakespeare.lit'
id="1ik3vs715"
to="harritudur@shakespeare.lit/pda'’
type='result'>
<query xmlns='http://jabber.org/protocol/disco#info'>
<identity
category="'game'
name="'england'
type='multi-user'/>
<feature var='http://jabber.org/protocol/mmog'/>
<feature var='http://jabber.org/protocol/mmog/dga'/>
<feature var='mmog_passwordprotected'/>
<feature var='mmog_hidden'/>
<feature var='mmog_temporary'/>
<feature var='mmog_open'/>
<feature var='mmog_unmoderated'/>
<feature var='mmog_nonanonymous'/>
<x xmlns='jabber:x:data' type='result'>
<field var='FORM_TYPE' type='hidden'>
<value>http://jabber.org/protocol/mmog#roominfo</value>
</field>
<field var='mmog#roominfo_description'
label="Description'>
<value>The House of York!</value>
</field>
<field var="mmog#roominfo_changesubject"’
label="0Occupants May Change the Subject'>
<value>true</value>
</field>
<field var="'mmog#roominfo_contactjid"
label="Contact Addresses'>
<value>richardiii@shakespeare.lit</value>
</field>
<field var="mmog#roominfo_subject’
label="Current Battle Topic'>
<value>Fights</value>
</field>
<field var="mmog#roomconfig_changesubject’
label="Subject can be modified'>
<value>true</value>
</field>
<field var="mmog#roominfo_occupants"
label="Number of occupants'>
<value>3</value>
</field>
<field var="mmog#roominfo_ldapgroup'
label="Associated LDAP Group'>
<value>cn=roses,dc=shakespeare,dc=1lit</value>
</field>
<field var='mmog#roominfo_lang'
label="'Language of discussion'>
<value>en</value>
</field>
<field var='mmog#roominfo_logs"
label="URL for discussion logs'>
<value>http://www.shakespeare.lit/gamelogs/england/</value>
</field>
<field var='mmog#maxhistoryfetch'
label="Maximum Number of History Messages Returned by Room'>

47

Some extended room information is dynamically generated (e.g., the URL for discussion logs, which may be
based on service-wide configuration), whereas other information is based on the more-stable room
configuration, which is why any field defined for the mmog#roomconfig FORM_TYPE can be included in the
extended service discovery fields (as shown above for the "mmog#roomconfig_changesubject" field).

Note: The foregoing extended service discovery fields for the
'http://jabber.org/protocol/mmog#roominfo’ FORM_TYPE are examples only and might be
supplemented in the future via the mechanisms described in the Field Standardization
section of this document.

6.6. Querying for Room Items

An entity MAY also query a specific game room for its associated items:

Example 15. Entity Queries for Items Associated with a Specific Game Room

<iq from='harritudur@shakespeare.lit/pda’
id="kl2fax27'
to="'england@games.shakespeare.lit"’
type="get'>
<query xmlns="http://jabber.org/protocol/disco#items'/>
</ig>

An implementation MAY return a list of existing occupants if that information is publicly available, or return
no list at all if this information is kept private. Implementations and deployments are advised to turn off
such information sharing by default.

Example 16. Room Returns Disco Items Result (Items are Public)

<iq from='england@games.shakespeare.lit'
id="kl2fax27'
to="harritudur@shakespeare.lit/pda’
type='result'>
<query xmlns='http://jabber.org/protocol/disco#items'>
<item jid='england@games.shakespeare.lit/richardiii'/>
<item jid='england@games.shakespeare.lit/wcatesby'/>
</query>
</iq>

Note: These <item/> elements are qualified by the disco#items namespace, not the MMOG
namespace; this means that they cannot possess 'affiliation' or 'role' attributes, for example.

If the list of occupants is private, the room MUST return an empty <query/> element, in accordance with XEP-
0030.

48

Example 17. Room Returns Empty Disco Items Result (Items are Private)

<iq from='england@games.shakespeare.lit'
id="kl2fax27'
to="harritudur@shakespeare.lit/pda'’
type='result'>
<query xmlns='http://jabber.org/protocol/disco#items'/>
</iq>

6.7. Querying a Room Occupant

If a non-occupant attempts to send a disco request to an address of the form <room@service/nick>, an
MMOG service MUST return a <bad-request/> error. If an occupant sends such a request, the service MAY
pass it through the intended recipient; see the Implementation Guidelines section of this document for
details.

6.8. Discovering Client Support for MMOG

An entity might want to discover if one of the entity’s contacts supports the Massively Multiplayer Online
Gaming protocol (e.g., before attempting to invite the contact to a room). This can be done using Service
Discovery.

Example 18. Entity Queries Contact Regarding MMOG Support

<iq from='harritudur@shakespeare.lit/pda’
id="yh2fs843"
to='wcatesby@shakespeare.lit/laptop'

type="get'>
<query xmlns='http://jabber.org/protocol/disco#info'/>
</iq>

The client SHOULD return its identity and the features it supports.

Example 19. Contact Returns Disco Info Result

<iq from='wcatesby@shakespeare.lit/laptop"
id="yh2fs843"
to="harritudur@shakespeare.lit/pda’
type='result'>
<query xmlns="http://jabber.org/protocol/disco#info'>

<identity
category='client'
type='pc'/>

<feature var='http://jabber.org/protocol/mmog'/>
</query>
</iq>
An entity may also query a contact regarding which rooms the contact is in. This is done by querying the

contact’s full JID (<user@host/resource>) while specifying the well-known Service Discovery node
'http://jabber.org/protocol/mmog#rooms'.

49

Example 20. Entity Queries Contact for Current Rooms

<igq from='harritudur@shakespeare.lit/pda’
id="gp7w61v3'
to="wcatesby@shakespeare.lit/laptop'
type="get'>
<query xmlns='http://jabber.org/protocol/disco#items’'
node="'http://jabber.org/protocol/mmog#rooms'/>
</iq>

Example 21. Contact Returns Room Query Result

<iq from='wcatesby@shakespeare.lit/laptop'
id="gp7w61v3'
to="harritudur@shakespeare.lit/pda’
type='result'>
<query xmlns='http://jabber.org/protocol/disco#items’'
node="'http://jabber.org/protocol/mmog#rooms"'>
<item jid='england@games.shakespeare.lit'/>
<item jid='characters@thewarsoftheroses.shakespeare.lit'/>
</query>
</iq>

Optionally, the contact MAY include its roomnick as the value of the 'name' attribute:

<item jid='england@games.shakespeare.lit'
name='sirwilliam'/>

If this information is private, the user MUST return an empty <query/> element, in accordance with XEP-
0030.

6.9. Announcing a Running Game

The client MAY implement User Gaming (XEP-0196) to announce running games. To publish a running game
the user sends:

50

Example 22. User Publishes Gaming Information

<iq type='set' from='richardiii@shakespeare.lit/desktop' id='publish1'>
<pubsub xmlns='http://jabber.org/protocol/pubsub'>
<publish node='urn:xmpp:gaming:0'>
<item id='1feea9cceec2537e1b561e66d45bc566e276f22f"'>
<game xmlns='urn:xmpp:gaming:0'>
<name>The Wars of the Roses</name>
<char_name>twr</char_name>
<server_name>Massively Multiplayer Online Gaming Service</server_name>
<server_address>games.shakespeare.lit</server_address>
<uri>xmpp:dga@games.shakespeare.lit?
play;game=http://jabber.org/protocol/mmog/dga</uri>
</game>
</item>
</publish>
</pubsub>
</ig>

When the user stops playing the game (i.e. leaves the game room), the user’s client SHOULD send an empty
<game/> element with the same ItemID:

Example 23. User Publishes Gaming Information On Exit

<iq type='set' from='richardiii@shakespeare.lit/desktop' id='publish2'>
<pubsub xmlns='http://jabber.org/protocol/pubsub'>
<publish node='urn:xmpp:gaming:0'>
<item id='1feea9cceec2537e1b561e66d45bc566e276f22f"'>
<game xmlns='urn:xmpp:gaming:0'/>
</item>
</publish>
</pubsub>
</iq>

7. Occupant Use Cases

The main actor in a Massively Multiplayer Online Gaming environment is the occupant, who can be said to
be located "in" a multi-user game room and to participate in the discussions held in that room (for the
purposes of this specification, participants and visitors are considered to be "mere" occupants, since they
possess no admin status). As will become clear, the protocol elements proposed in this document to fulfil the
occupant use cases fall into three categories:

1. the basic functionality for joining a room, exchanging messages with all occupants, etc. (supported by
the groupchat 1.0 protocol that preceded MUC and therefore MMOG).

2. straightforward additions to the basic functionality, such as handling of errors related to new room
types.

3. additional protocol elements to handle functionality not covered by groupchat 1.0 (room invites, room
passwords, extended presence related to room roles and affiliations); these are qualified by the
'http://jabber.org/protocol/mmog#user' namespace.

51

Note: All client-generated examples herein are presented from the perspective of the
service, with the result that all stanzas received by a service contain a 'from' attribute
corresponding to the sender’s full JID as added by a normal XMPP router or session
manager. In addition, normal IQ result stanzas sent upon successful completion of a request
(as required by XMPP Core) are not shown.

7.1. Order of Events

The order of events involved in joining a room needs to be consistent so that clients can know which events
to expect when. After a client sends presence to join a room, the MMOG service MUST send it events in the
following order:

1. In-room presence from other occupants.

2. In-room presence from the joining entity itself (so-called "self-presence").
3. Room history (if any).

4. The room subject.

5. Live messages, presence updates, new user joins, etc.

7.2. Entering a Room

7.2.1. Basic MMOG Protocol

In order to participate in the discussions held in a multi-user game room, a user MUST first become an
occupant by entering the room.

MMOG clients MUST signal their ability to speak the MMOG protocol by including in the initial presence
stanza an empty <game/> element qualified by the 'http://jabber.org/protocol/mmog' namespace (note the
absence of the '#user' fragment):

Example 24. User Seeks to Enter a Room (Massively Multiplayer Online Gaming)

<presence
from="harritudur@shakespeare.lit/pda’
id='n13mt31"’
to='england@games.shakespeare.lit/earl1'>
<game

xmlns="http://jabber.org/protocol/mmog’
var="http://jabber.org/protocol/mmog/dga'/>
</presence>

In this example, a user with a full JID of "harritudur@shakespeare.lit/pda" has requested to enter the room
"england" on the "games.shakespeare.lit" gaming service with a room nickname of "earl1".

Note: The presence stanza used to join a room MUST NOT possess a 'type' attribute, i.e., it
must be available presence. For further discussion, see the Presence business rules.

52

If the user does not specify a room nickname (note the bare JID on the 'from' address in the following
example), the service MUST return a <jid-malformed/> error:

Example 25. No Nickname Specified

<presence
from='england@games.shakespeare.lit"'
id='273hs51g"
to="harritudur@shakespeare.lit/pda’
type='error'>
<error by='england@games.shakespeare.lit' type='modify'>
<jid-malformed xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</presence>

Before attempting to enter the room, an MMOG-compliant client SHOULD first discover its reserved room
nickname (if any) by following the protocol defined in the Discovering Reserved Room Nickname section of
this document.

When an MMOG service receives a <game/> tagged join stanza from an already-joined client (as identified by
the client’s full JID), the service should assume that the client lost its synchronization, and therefore it
SHOULD send exactly the same stanzas to the client as if it actually just joined the MMOG. The server MAY
also send a presence update to the other participants according to the received join presence.

7.2.2. Presence Broadcast

If the service is able to add the user to the room, it MUST send presence from all the existing participants'
occupant JIDs to the new occupant’s full JID, including extended presence information about roles in a single
<game/> element qualified by the 'http://jabber.org/protocol/mmog#user' namespace and containing an

<item/> child with the 'role' attribute set to a value of "moderator”, "participant”, or "visitor", and with the

"affiliation’ attribute set to a value of "owner", "admin”, "member", or "none" as appropriate. (NB)

53

Example 26. Service Sends Match State and Presence from Existing Occupants to New Occupant

<presence
from='england@games.shakespeare.lit"'
to="harritudur@shakespeare.lit/pda'>
<game xmlns='http://jabber.org/protocol/mmog"'>
<status>active</status>
<state xmlns='http://jabber.org/protocol/mmog/dga'>
<x xmlns='jabber:x:data' type='submit'>

</x>
</state>
</game>
</presence>

<presence
from="'england@games.shakespeare.lit/king'
id="'3DCB0401-D7CF-4E31-BE0O5-EDF8D057BFBD"'
to="harritudur@shakespeare.lit/pda’'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='owner' role='moderator' team='york'/>
</game>
</presence>

<presence
from='england@games.shakespeare.lit/sirwilliam’
id="'C2CD9EE3-8421-431E-854A-A2ADOCE2E23D"
to="harritudur@shakespeare.lit/pda’'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='admin' role='moderator' team='york'/>
</game>
</presence>

In this example, the user from the previous example has entered the room, by which time two other people
had already entered the room: a user with a room nickname of "king" (who is a room owner) and a user with
aroom nickname of "sirwilliam" (who is a room admin).

Unless the room is configured to not broadcast presence from new occupants below a certain affiliation
level (as controlled by the "mmog#roomconfig_presencebroadcast" room configuration option), the service
MUST also send presence from the new participant’s occupant JID to the full JIDs of all the occupants
(including the new occupant).

54

Example 27. Service Sends New Occupant’s Presence to All Occupants

<presence
from='england@games.shakespeare.lit/earl1’
id="27C55F89-1C6A-459A-9EB5-77690145D624"'
to='richardiii@shakespeare.lit/desktop'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='member' role='participant'/>
</game>
</presence>

<presence
from="'england@games.shakespeare.lit/earl1"’
id="9E757BAE-8AC8-4093-AA9C-407F6AEF15D6"
to="wcatesby@shakespeare.lit/laptop'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='member' role='participant'/>
</game>
</presence>

<presence
from="'england@games.shakespeare.lit/earl1"’
1d="'026B3509-2CCE-4D69-96D6-25F41FFDC408"'
to="harritudur@shakespeare.lit/pda’'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='member' role='participant'/>
<status code='110'/>
</game>
</presence>

In this example, initial room presence is being sent from the new occupant (earl1) to all occupants, including
the new occupant.

As shown in the last stanza, the "self-presence" sent by the room to the new user MUST include a status code
of 110 so that the user knows this presence refers to itself as an occupant. This self-presence MUST NOT be
sent to the new occupant until the room has sent the presence of all other occupants to the new occupant;
this enables the new occupant to know when it has finished receiving the room roster.

The service MAY rewrite the new occupant’s roomnick (e.g., if roomnicks are locked down or based on some
other policy).

In particular, if roomnicks are locked down then the service MUST do one of the following.

If the user has connected using a "groupchat 1.0" client (as indicated on joining the room by the lack of the
MMOG extension), then the service SHOULD deny the nickname change request and return a presence
stanza of type "error” with a <not-acceptable/> error condition:

55

Example 28. Service Denies Room Join Because Roomnicks Are Locked Down

<presence
from='england@games.shakespeare.lit/earl1’
id="'ng91xs69"'
to="harritudur@shakespeare.lit/pda’
type='error'>
<game xmlns='http://jabber.org/protocol/mmog'/>
<error by='england@games.shakespeare.lit' type='cancel'>
<not-acceptable xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</presence>

If the user has connected using an MMOG client (as indicated on joining the room by inclusion of the MMOG
extension), then the service MUST allow the client to enter the room, modify the nick in accordance with the
lockdown policy, and include a status code of "210" in the presence broadcast that it sends to the new
occupant.

Example 29. Service Sends New Occupant’s Presence to New Occupant

<presence
from="'england@games.shakespeare.lit/earl1"’
id='n13mt31"’
to="harritudur@shakespeare.lit/pda'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='member' role='participant'/>
<status code='110"'/>
<status code='210"'/>
</game>
</presence>

Note: The order of the presence stanzas sent to the new occupant is important. The service
MUST first send the complete list of the existing occupants to the new occupant and only
then send the new occupant’s own presence to the new occupant. This helps the client know
when it has received the complete "room roster". For tracking purposes, the room might
also reflect the original 'id' value if provided in the presence stanza sent by the user.

After sending the presence broadcast (and only after doing so), the service MAY then send discussion history,
the room subject, live messages, presence updates, and other in-room traffic.

7.2.3. Non-Anonymous Rooms

If the room is non-anonymous, the service MUST send the new occupant’s full JID to all occupants using
extended presence information in an <game/> element qualified by the
'http://jabber.org/protocol/mmog#user' namespace and containing an <item/> child with a 'jid' attribute
specifying the occupant’s full JID:

56

Example 30. Service Sends Full JID to All Occupants

<presence
from='england@games.shakespeare.lit/earl1’
1d="'17232D15-134F-43C8-9A29-61C20A64B236"'
to='richardiii@shakespeare.lit/desktop'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='none'
jid="harritudur@shakespeare.lit/pda’
role='participant'/>
</game>
</presence>

[coo]

If the user is entering a room that is non-anonymous (i.e., which informs all occupants of each occupant’s full
JID as shown above), the service MUST warn the user by including a status code of "100" in the initial
presence that the room sends to the new occupant:

Example 31. Service Sends New Occupant’s Presence to New Occupant

<presence
from='england@games.shakespeare.lit/earl1’
id='n13mt31"’
to="harritudur@shakespeare.lit/pda'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='member' role='participant'/>
<status code='100'/>
<status code='110'/>
<status code='210'/>
</game>
</presence>

The inclusion of the status code assists clients in presenting their own notification messages (e.g.,
information appropriate to the user’s locality).

7.2.4. Semi-Anonymous Rooms

If the room is semi-anonymous, the service MUST send presence from the new occupant to all occupants as
specified above (i.e., unless the room is configured to not broadcast presence from new occupants below a
certain affiliation level as controlled by the "mmog#roomconfig_presencebroadcast” room configuration
option), but MUST include the new occupant’s full JID only in the presence notifications it sends to occupants
with a role of "moderator” and not to non-moderator occupants.

(Note: All subsequent examples include the 'jid' attribute for each <item/> element, even
though this information is not sent to non-moderators in semi-anonymous rooms.)

57

7.2.5. Password-Protected Rooms

If the room requires a password and the user did not supply one (or the password provided is incorrect), the
service MUST deny access to the room and inform the user that they are unauthorized; this is done by
returning a presence stanza of type "error" specifying a <not-authorized/> error:

Example 32. Service Denies Access Because No Password Provided

<presence
from='england@games.shakespeare.lit/earl1’
id='n13mt31"’
to="harritudur@shakespeare.lit/pda’
type='error'>
<game xmlns='http://jabber.org/protocol/mmog'/>
<error by='england@games.shakespeare.lit' type='auth'>
<not-authorized xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</presence>

Passwords SHOULD be supplied with the presence stanza sent when entering the room, contained within a
<game/> element qualified by the 'http://jabber.org/protocol/mmog’ namespace and containing a
<password/> child. Passwords are to be sent as cleartext; no other authentication methods are supported at
this time, and any such authentication or authorization methods shall be defined in a separate specification
(see the Security Considerations section of this document).

Example 33. User Provides Password On Entering a Room

<presence
from="harritudur@shakespeare.lit/pda’
id='djn4714"
to="england@games.shakespeare.lit/earll'>
<game

xmlns="http://jabber.org/protocol/mmog'
var="http://jabber.org/protocol/mmog/dga'>
<password>dieuetmondroit</password>
</game>
</presence>

7.2.6. Members-Only Rooms

If the room is members-only but the user is not on the member list, the service MUST deny access to the
room and inform the user that they are not allowed to enter the room; this is done by returning a presence
stanza of type "error" specifying a <registration-required/> error condition:

58

Example 34. Service Denies Access Because User Is Not on Member List

<presence
from='england@games.shakespeare.lit/earl1’
id='n13mt31"’
to="harritudur@shakespeare.lit/pda’
type='error'>
<game xmlns='http://jabber.org/protocol/mmog'/>
<error by='england@games.shakespeare.lit' type='auth'>
<registration-required xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</presence>

7.2.7. Banned Users

If the user has been banned from the room (i.e., has an affiliation of "outcast"), the service MUST deny access
to the room and inform the user of the fact that they are banned; this is done by returning a presence stanza
of type "error" specifying a <forbidden/> error condition:

Example 35. Service Denies Access Because User is Banned

<presence
from='england@games.shakespeare.lit/earl1’
id="n13mt31"
to="harritudur@shakespeare.lit/pda’
type='error'>
<game xmlns='http://jabber.org/protocol/mmog'/>
<error by='england@games.shakespeare.lit' type='auth'>
<forbidden xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</presence>

7.2.8. Nickname Conflict

If the room already contains another user with the nickname desired by the user seeking to enter the room
(or if the nickname is reserved by another user on the member list), the service MUST deny access to the
room and inform the user of the conflict; this is done by returning a presence stanza of type "error"
specifying a <conflict/> error condition:

Example 36. Service Denies Access Because of Nick Conflict

<presence
from="'england@games.shakespeare.lit/earl1"’
id='n13mt31"’
to="harritudur@shakespeare.lit/pda’
type='error'>
<game xmlns='http://jabber.org/protocol/mmog'/>
<error by='england@games.shakespeare.lit' type='cancel'>
<conflict xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</presence>

39

However, if the bare JID <localpart@domain.tld> of the present occupant matches the bare JID of the user
seeking to enter the room, then the service SHOULD allow entry to the user, so that the user has two (or
more) in-room "sessions" with the same roomnick, one for each resource. If a service allows more than one
occupant with the same bare JID and the same room nickname, it MUST route in-room messages to all of the
user’s resources and allow all of the user’s resources to send messages to the room; it is up to the
implementation whether to route private messages to all resources or only one resource (based on presence
priority or some other algorithm); however, it is RECOMMENDED to route to all resources.

How nickname conflicts are determined is up to the implementation (e.g., whether the service applies a case
folding routine, a stringprep profile such as Resourceprep or Nodeprep, etc.).

7.2.9. Max Users

If the room has reached its maximum number of occupants, the service SHOULD deny access to the room
and inform the user of the restriction; this is done by returning a presence stanza of type "error" specifying a
<service-unavailable/> error condition:

Example 37. Service Informs User that Room Occupant Limit Has Been Reached

<presence
from="'england@games.shakespeare.lit/earl1"’
id='n13mt31"’
to="harritudur@shakespeare.lit/pda’
type='error'>
<game xmlns='http://jabber.org/protocol/mmog'/>
<error by='england@games.shakespeare.lit' type='wait'>
<service-unavailable xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</presence>

Alternatively, the room could kick an "idle user" in order to free up space (where the definition of "idle user"
is up to the implementation).

If the room has reached its maximum number of occupants and a room admin or owner attempts to join, the
room MUST allow the admin or owner to join, up to some reasonable number of additional occupants; this
helps to prevent denial of service attacks caused by stuffing the room with non-admin users.

7.2.10. Locked Room

If a user attempts to enter a room while it is "locked" (i.e., before the room creator provides an initial
configuration and therefore before the room officially exists), the service MUST refuse entry and return an
<item-not-found/> error to the user:

60

mailto:localpart@domain.tld

Example 38. Service Denies Access Because Room Does Not (Yet) Exist

<presence
from='england@games.shakespeare.lit/earl1’
id='n13mt31"’
to="harritudur@shakespeare.lit/pda’
type='error'>
<game xmlns='http://jabber.org/protocol/mmog'/>
<error by='england@games.shakespeare.lit' type='cancel'>
<item-not-found xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>

</presence>

7.2.11. Nonexistent Room

If the room does not already exist when the user seeks to enter it, the service SHOULD create it; however,
this is not required, since an implementation or deployment MAY choose to restrict the privilege of creating
rooms. For details, see the Creating a Room section of this document.

7.2.12. Room Logging

If the user is entering a room in which the discussions are logged to a public archive (often accessible via
HTTP), the service SHOULD allow the user to enter the room but MUST also warn the user that the
discussions are logged. This is done by including a status code of "170" in the initial presence that the room
sends to the new occupant:

Example 39. Service Sends New Occupant’s Presence to New Occupant

<presence
from="'england@games.shakespeare.lit/earl1"’
id='n13mt31"’
to="harritudur@shakespeare.lit/pda'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='member' role='participant'/>
<status code='100"'/>
<status code='110"'/>
<status code='170"'/>
<status code='210"'/>
</game>
</presence>

7.2.13. Discussion History

After sending initial presence as shown above, depending on local service policy or room configuration a
room MAY send discussion history to the new occupant. (The room MUST NOT send any discussion history
before it finishes sending room presence as specified in the Presence Broadcast section of this document.)
Whether such history is sent, and how many messages comprise the history, shall be determined by the
game service implementation or specific deployment depending on local service policy or room
configuration.

61

Example 40. Delivery of Discussion History

<message
from='england@games.shakespeare.lit/king'
id="'162BEBB1-F6DB-4D9A-9BD8-CFDCC801A0B2 "'
to="norfolk@shakespeare.lit/broom'
type='groupchat'>
<body>A horse! a horse! my kingdom for a horse!</body>
<delay xmlns='urn:xmpp:delay'
from="'england@games.shakespeare.lit"'
stamp='2019-09-07T18:22:02Z"'/>
</message>

<message
from="'england@games.shakespeare.lit/sirwilliam'
1d='90057840-30FD-4141-AA44-103EEDF218FC"
to="norfolk@shakespeare.lit/broom'
type='groupchat'>
<body>Withdraw, my lord; I'll help you to a horse.</body>
<delay xmlns='urn:xmpp:delay'
from='england@games.shakespeare.lit"'
stamp='2019-09-07T18:22:10Z2"'/>
</message>

<message
from='england@games.shakespeare.lit/earl1’
id='77E07BB0-55CF-4BD4-890E-3F7COE686BBD"'
to="norfolk@shakespeare.lit/broom’
type="'groupchat'>
<body>I think there be six Richmonds in the field.</body>
<delay xmlns='urn:xmpp:delay’
from='england@games.shakespeare.lit"'
stamp='2019-09-07T18:22:232"'/>
</message>

Discussion history messages MUST be stamped with Delayed Delivery (XEP-0203) information qualified by
the 'urn:xmpp:delay' namespace to indicate that they are sent with delayed delivery and to specify the times
at which they were originally sent. The 'from' attribute MUST be set to the JID of the room itself.

(Note: The 'urn:xmpp:delay’ namespace defined in XEP-0203 supersedes the older
‘jabber:x:delay’ namespace defined in Legacy Delayed Delivery (XEP-0091); some
implementations include both formats for backward compatibility.)

The service MUST send all discussion history messages before delivering the room subject and any "live"
messages sent after the user enters the room. Note well that this means the room subject (and changes to
the room subject prior to the current subject) are not part of the discussion history.

If the room is non-anonymous, the service MAY include an Extended Stanza Addressing (XEP-0033) element
that notes the original full JID of the sender by means of the "ofrom" address type:

Example 41. Discussion History Message with Original From

62

<message
from="'england@games.shakespeare.lit/king'
id="162BEBB1-F6DB-4D9A-9BD8-CFDCC801A0B2"'
to="norfolk@shakespeare.lit/broom'
type='groupchat'>
<body>Five have I slain today instead of him.</body>
<delay xmlns='urn:xmpp:delay'
from="'england@games.shakespeare.lit'
stamp='2019-09-07T18:22:32Z2"'/>
<addresses xmlns='http://jabber.org/protocol/address'>
<address type='ofrom' jid='richardiii@shakespeare.lit/desktop'/>
</addresses>
</message>

7.2.14. Managing Discussion History

A user might want to manage the amount of discussion history provided on entering a room (perhaps
because the user is on a low-bandwidth connection or is using a small-footprint client). This is accomplished

by including a <history/> child in the initial presence stanza sent when joining the room. There are four
allowable attributes for this element:

Table 9: History Management Attributes

Attribute Datatype Meaning

maxchars int Limit the total number of characters in the history to "game" (where
the character count is the characters of the complete XML stanzas, not
only their XML character data).

maxstanzas int Limit the total number of messages in the history to "game".
seconds int Send only the messages received in the last "game" seconds.
since dateTime Send only the messages received since the UTC datetime specified

(which MUST conform to the DateTime profile specified in XMPP Date
and Time Profiles (XEP-0082)).

The service MUST send the smallest amount of traffic that meets any combination of the above criteria,
taking into account service-level and room-level defaults. The service MUST send complete message stanzas
only (i.e., it MUST not literally truncate the history at a certain number of characters, but MUST send the
largest number of complete stanzas that results in a number of characters less than or equal to the

'maxchars' value specified). If the client wishes to receive no history, it MUST set the 'maxchars' attribute to
avalue of "0" (zero).

Note: It is known that not all service implementations support MMOG history management,
so in practice a client might not be able to depend on receiving only the history that it has
requested.

The following examples illustrate the use of this feature.

63

Example 42. User Requests Limit on Number of Characters in History

<presence
from="harritudur@shakespeare.lit/pda’
id='n13mt31"’
to='england@games.shakespeare.lit/earl1'>
<game xmlns='http://jabber.org/protocol/mmog"'>
<history maxchars='65000"/>
</game>
</presence>

Example 43. User Requests Limit on Number of Messages in History

<presence
from="harritudur@shakespeare.lit/pda’
id='n13mt31"’
to='england@games.shakespeare.lit/earl1'>
<game xmlns='http://jabber.org/protocol/mmog"'>
<history maxstanzas='20"'/>
</game>
</presence>

Example 44. User Requests History in Last 3 Minutes

<presence
from="harritudur@shakespeare.lit/pda’
id='n13mt31"’
to="england@games.shakespeare.lit/earl1'>
<game xmlns='http://jabber.org/protocol/mmog"'>
<history seconds='180'/>
</game>
</presence>

Example 45. User Requests All History Since the Beginning of the Unix Era

<presence
from="harritudur@shakespeare.lit/pda’
id='n13mt31"’
to="england@games.shakespeare.lit/earl1'>
<game xmlns='http://jabber.org/protocol/mmog"'>
<history since='1970-01-01T00:00:00Z"'/>
</game>
</presence>

Obviously the service SHOULD NOT return all messages sent in the room since the beginning of the Unix era,
and SHOULD appropriately limit the amount of history sent to the user based on service or room defaults.

64

Example 46. User Requests No History

<presence
from="harritudur@shakespeare.lit/pda’
id='n13mt31"’
to='england@games.shakespeare.lit/earl1'>
<game xmlns='http://jabber.org/protocol/mmog"'>
<history maxchars='0"'/>
</game>
</presence>

7.2.15. Room Subject

After the room has optionally sent the discussion history to the new occupant, it SHALL send the current
room subject. This is a <message/> stanza from the room JID (or from the occupant JID of the entity that set
the subject), with a <subject/> element but no <body/> element, as shown in the following example.

Example 47. Service Informs New Occupant of Room Subject

<message
from="'england@games.shakespeare.lit/sirwilliam'
id='F437C672-D438-4BD3-9BFF-091050D32EE2"
to='richardiii@shakespeare.lit/desktop"’
type="'groupchat'>
<subject>Made glorious summer by this Sun of York!</subject>
</message>

If there is no subject set, the room MUST return an empty <subject/> element.

Example 48. No Subject

<message
from="'england@games.shakespeare.lit/sirwilliam’
id="'F437C672-D438-4BD3-9BFF-091050D32EE2"
to='richardiii@shakespeare.lit/desktop"’
type="'groupchat'>
<subject></subject>
</message>

Note: In accordance with the core definition of XML stanzas, any message can contain a
<subject/> element; only a message that contains a <subject/> but no <body/> element shall
be considered a subject change for MMOG purposes.

7.2.16. Live Messages

After the room has sent the room subject, it SHALL begin to send live messages, presence changes, occupant
"joins" and "leaves", and other real-time traffic to the new occupant, as described in other sections of this

document.

65

7.2.17. Error Conditions

The following table summarizes the XMPP error conditions that can be returned to an entity that attempts
to enter an MMOG room.

Table 10: Error Conditions for Entering a Room

Condition Purpose
<not-authorized/> Inform user that a password is required
<forbidden/> Inform user that he or she is banned from the room

<item-not-found/> Inform user that the room does not exist

<not-allowed/> Inform user that room creation is restricted

<not-acceptable/> Inform user that the reserved roomnick must be used

<registration- Inform user that he or she is not on the member list

required/>

<conflict/> Inform user that his or her desired room nickname is in use or registered by
another user

<service- Inform user that the maximum number of users has been reached

unavailable/>

7.2.18. Groupchat 1.0 Protocol

In the old groupchat 1.0 protocol, entering a room was done by sending presence with no 'type' attribute to
<room@service/nick>, where "room" is the room ID, "service" is the hostname of the game service, and
"nick" is the user’s desired nickname within the room:

Example 49. User Seeks to Enter a Room (groupchat 1.0)

<presence
from="harritudur@shakespeare.lit/pda’
1d='ng91xs69"'
to="'england@games.shakespeare.lit/earl1'/>

This behavior can not be distinguished from a presence update from an MMOG-supporting client that was
desynchronized from the room. Treating this as a groupchat 1.0 join will mask the error and leave the client
in a partially-synchronized state. Therefore, starting with version 1.32 of MUC specification, it is
RECOMMENDED that a service receiving a <presence> without an <game> element from a non-occupant full-
JID responds with an explicit kick to that client. The kick MUST contain the status codes 110 (occupant’s
presence), 307 (kick), and 333 (kick due to technical problems).

66

Example 50. Service Response to groupchat 1.0 join / non-occupant presence update

<presence
from='england@games.shakespeare.lit/earl1’
to="harritudur@shakespeare.lit/pda'’
type='unavailable'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='none' role='none'>
<reason>You are not in the room.</reason>
</item>
<status code='110"'/>
<status code='307"'/>
<status code='333"'/>
</game>
</presence>

7.3. Occupant Modification of the Room Subject

If allowed in accordance with room configuration, a mere occupant MAY be allowed to change the subject in
aroom. For details, see the Modifying the Room Subject section of this document.

7.4.Joining a Team

When a user wants to join a free team, he sends the following presence to <room@service>.

Example 51. User Wants To Join a Team

<presence
from="wcatesby@shakespeare.lit/laptop"’
to="'england@games.shakespeare.lit'>
<game xmlns='http://jabber.org/protocol/mmog"'>
<item role='York'/>
</game>
</presence>

After the team has been successfully assigned to the requesting occupant, the service MUST send the new

presence to all occupants.

67

Example 52. Service Sends Changed Occupant’s Presence to All Occupant

<presence
from='england@games.shakespeare.lit/sirwilliam'
to='richardiii@shakespeare.lit/desktop'>
<game xmlns='http://jabber.org/protocol/mmog"'>
<item affiliation='none' team='york'/>
</game>
</presence>

<presence
from="'england@games.shakespeare.lit/sirwilliam'
to="harritudur@shakespeare.lit/pda'>
<game xmlns='http://jabber.org/protocol/mmog"'>
<item affiliation='none' team='york'/>
</game>
</presence>

Example 53. Service Sends Changed Occupants Presence Back To Occupant

<presence
from="'england@games.shakespeare.lit/sirwilliam'
to="wcatesby@shakespeare.lit/laptop'>
<game xmlns='http://jabber.org/protocol/mmog"'>
<item affiliation='none' team='york'/>
</game>
</presence>

If the team is already taken, the service must return the following error.

Example 54. Service Informs User About Team Conflict

<presence
from='england@games.shakespeare.lit"'
to="'wcatesby@shakespeare.lit/laptop'
type='error'>
<game xmlns='http://jabber.org/protocol/mmog'/>
<error type='cancel'>
<conflict xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</presence>

If the requested team doesn’t exist in the match, the service MUST return a not-acceptable error.

7.5. Match Start

After the match is ready to be started (as to be defined by the game protocol), all players MUST send start
messages in order to start the game.

The <start/> element in the <message/> stanza MUST contain an element <pc/> defining the name of which
player character (PC) the user is going to play in the upcoming match. The field 'name' is the player
character’s name; this field MUST present and correspond to the user’s name. The field 'visiname' is the

68

player character’s visible name; the field is optional and if it is absent then the visible name is equal to the
player character’s name. The field 'model’ is the player character’s weapon model; the field MUST present
because it defines the model of playable characters the user is acting for.

Example 55. Player Sends a Start Message

<message
from="'richardiii@shakespeare.lit/desktop'’
to='england@games.shakespeare.lit'
type="'groupchat'>
<start xmlns='http://jabber.org/protocol/mmog#user'>
<pc name='richardiii' visiname='Good Lord' model='King'>
</start>
</message>

In order to see what players are ready to start, the service MUST reflect the start message from each player
to all players. In the case when identifiers for player characters (pcs) are assigned by the server, then the
reflected messages MUST include unique identifiers for every registered player character to be used within
the match.

In the case when identifiers for non-player characters (npcs) are assigned by the server, then the reflected
start messages MUST include identifiers generated for all non-player characters to be used within the match.

The server MUST include to the reflected message the <pc> element, containing the player started the match.
If the server starts a match only after preparing a list of the players requested for a match (Single Battle
Match), then the server MUST return to each player the response including this player in the <pc> element.

In the case of continuing matches (Battle Royale Matches) the server MUST reflect the message with the <pc>
element containing the last player requested to join the current match, and the <pcs> element containing the
list of players currently participating in the match.

The <pcs> element MUST include all players participating in the match and also the player noticed in the <pc>
element.

The order the players are listed in the <pcs> element MUST be the same for all players the message is
reflected to.

69

Example 56. Service Reflects the Start Message

<message
from='england@games.shakespeare.lit/king'
to='richardiii@shakespeare.lit/desktop"’
type='groupchat'>
<start xmlns='http://jabber.org/protocol/mmog#user’

jid="bosworth@games.shakespeare.lit'
name="'bosworth'

battlefield='Valley'

match='Single Battle'>

<pc jid='richardiii@shakespeare.lit/desktop'’

chid="'h7ns81g"
name='richardiii'
visiname='Good Lord'
model="'King"
team="'York'
position='0"'>

</pc>
<pcs>
<pc jid='richardiii@shakespeare.lit/desktop"’

chid='h7ns81g"'
name='richardiii'
visiname='Good Lord'
model="'King'
team="'York"
position='0"'>

<pc jid='wcatesby@shakespeare.lit/laptop'’

chid="'1x09df27"'
name='wcatesby'
visiname='Good Catholic'
model="'Councillor'
team="'York'
position="1">

</pc>
</pcs>
<npcs>
<npc chid="'d72d91y"

name="House01'
visiname='Watchtower"
model="Building'
team="'York'
position='0"'>

</npc>
</npcs>
</start>

</message>

<message
from='england@games.shakespeare.lit/king’
to="'wcatesby@shakespeare.lit/laptop'
type="'groupchat'>
<start xmlns='http://jabber.org/protocol/mmog#user’

70

jid="bosworth@games.shakespeare.lit'
name="'bosworth’

battlefield="'Valley'

match='Single Battle'>

<pc jid='wcatesby@shakespeare.lit/laptop'

The following table describes the attributes of the game match started on the server and represented by the

<start> element returned from the server.

Table 11: Attributes of Game Matches

Element
jid
name

battlefield

match

Meaning
AJabber Identifier (JID) assigned by the game server to the game match.
The game match’s name corresponding its JID.

The game match’s battlefield type representing the class of game battlefield the user is
going to play on.

The game match’s type representing the class of game matches the user is going to play.

The following table describes the attributes of player characters.

Table 12: Attributes of Player Characters

Element
jid

chid
name

visiname

model

team

position

Meaning

AJabber Identifier (JID) assigned by the game server to the player character.

A Character Identifier (CHID) assigned by the game server to the player character.
The player character’s name corresponding to the user’s name.

The player character’s visible name. The field is optional and if it is absent then the
visible name is equal to the player character’s name.

The player character’s model representing the class of playable characters the user is
acting for.

A game team assigned by the game server to the player character.

The index of the player character’s disposition on the battlefield during the match
starting.

The following table describes the attributes of non-player characters.

71

Table 13: Attributes of Non-Player Characters

Element Meaning

chid A Character Identifier (CHID) assigned by the game server to the non-player character.
name The non-player character’s name.

visiname The non-player character’s visible name. The field is optional and if it is absent then the

visible name is equal to the name.

model The non-player character’s model representing the class of non-playable characters.

team A game team assigned by the game server to the non-player character.

position The index of the non-player character’s disposition on the battlefield during the match
starting.

If the match is not ready, the service MUST send the following error.

Example 57. Service Informs Player that the Match is Not Ready

<message
from='england@games.shakespeare.lit"'
to='richardiii@shakespeare.lit/desktop'
type='error'>
<start xmlns='http://jabber.org/protocol/mmog#user'>
<pc name='richardiii' visiname='Good Lord' model='King'>
</start>
<error type='cancel'>
<not-allowed xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</message>

After the service received messages from all players, it MUST update the match status from inactive to active
by a presence broadcast to all occupants. If the owner changes the configuration or roles change after a
player sent his message and before the service sends presence broadcast indicating the game status active,
the player MUST send the message again.

72

Example 58. Service Broadcasts the Start Message to All

<presence
from='england@games.shakespeare.lit"'
to='elizabeth@shakespeare.lit/tablet"'
type='groupchat'>
<game xmlns='http://jabber.org/protocol/mmog"'>
<pC
jid='elizabeth@shakespeare.lit/tablet"
chid='zb8q41f4"’
name='elizabeth'
visiname='White Rose'
model="'Queen Consort'
team="'York'
position='2"'>
<status>active</status>
<state xmlns='http://jabber.org/protocol/mmog/dga'>
<x xmlns='jabber:x:data' type='submit'>

</x>
</state>
</game>
</presence>

<presence
from='england@games.shakespeare.lit"'
to="'wcatesby@shakespeare.lit/laptop'
type="'groupchat'>
<game xmlns='http://jabber.org/protocol/mmog'>
<pc jid='wcatesby@shakespeare.lit/laptop’
chid="1x09df27"
name='wcatesby'
visiname='Good Catholic'
model="'Councillor'
team="'York'
position="1">
<status>active</status>
<state xmlns='http://jabber.org/protocol/mmog/dga’>
<x xmlns='jabber:x:data' type='submit'>

</ x>
</state>

</game>
</presence>

<presence
from="england@games.shakespeare.lit"'
to='richardiii@shakespeare.lit/desktop"’
type="groupchat'>
<game xmlns='http://jabber.org/protocol/mmog'>
<pC
jid='richardiii@shakespeare.lit/desktop"’
chid="h7ns81g"
name='richardiii’
visiname="'Good Lord'
model="King'
team="'York'
position='0'>
<status>active</status>
<state xmlns='http://jabber.org/protocol/mmog/dga'>
<x xmlns='jabber:x:data' type='submit'>

73

Note that the spectator "elizabeth" receives the start presence, too.

7.6. Move in Match

In order to make a move in a match, a <message/> stanza MUST be send to <room@service/nick> containing
a <turn/> element qualified by 'http://jabber.org/protocol/mmog#user' namespace. Game protocols SHOULD
place their own elements defining the turn inside the <turn/> element.

A move is defined in the element of the same name <move> which MUST be included within the element
<pc> of an appropriate playing character.

74

Example 59. Occupant Sends a Move in a Game Turn

<message

from='richardiii@shakespeare.lit/desktop’

id="hysf1v37'
to="bosworth@games.shakespeare.lit'
type='groupchat'>

<turn xmlns='http://jabber.org/protocol/mmog#user’

tuid="'dyb12s6'>

<pc jid='richardiii@shakespeare.lit/desktop'’

chid="'h7ns81g"

name='richardiii'

visiname="'Good Lord'

model="King"

team="'York'

position='0"'>
<moves>

<move xmlns='http://jabber.org/protocol/mmog#user’

node="'Chevalier'>

<location x='"' y="'"' z=""'/>

<rotation x='' y="'"' z=""'" w=""'/>

<view x='' y='"' z=""/>

<walk x='' y='"' z=""/>

<linear x='' y='"' z=""/>

<angular x='' y="'"' z=""/>
</move>

<move xmlns='http://jabber.org/protocol/mmog#user’

node="'Hull'>

<location x='"' y=""' z=""/>

<rotation x='"' y="'"' z="'"' w=""'/>

<view x=''y='"' z="'"'/>

<walk x='"' y='"' z=""/>

<linear x="'"' y='"' z="'"'/>

<angular x='"' y="'"' z=""/>
</move>

<move xmlns='http://jabber.org/protocol/mmog#user’

node="Head'>

<location x='"' y="'"' z=""/>
<rotation x='"' y='"' z=""' w=""/>
<view x=''y='' z="'"'/>
<walk x=''y='"' z=""'/>
<linear x="'"' y='"' z="'"'/>
<angular x='"' y="'"' z=""/>
</move>
</moves>

</pc>

<npc chid='e79ayaa’
name="'TowerQ01'
visiname='Donjon'
model="'Siegetower'
team="York'
position='0"'>

<moves>

<move xmlns='http://jabber.org/protocol/mmog#user

node="'Tower01"'>

<location x="'"' y="'"' z=""/>
<rotation x='"' y='"' z=""'" w=""'/>
<view x='' y='' z=""/>

<walk x='"' y='"' z=""/>

<linear x="'"' y='"' z=""'/>
<angular x='' y="'"' z=""/>

75

The element <move> CAN include internal elements as the following ones in the table below. Every element
contains attributes defining physical conditions of the player character in the game space.

Table 14: Internal Elements of a Move

Element Meaning

location The player character’s location in the game space.
rotation The player character’s rotation in the game space.
view The player character’s viewing direction.

walk The player character’s walking direction.

linear The player character’s linear velocity.

angular The player character’s angular velocity.

The element <move> MUST include the field 'node' defining the identifier (name) of some part of the player
character.

A service MUST validate the player’s move before passing it to the occupants. If the turn is invalid, as defined
by the game protocol, the service MUST return an error and kick the player unless the player is the owner of
the room, in which case he SHOULD lose his game role.

Example 60. Service Informs Player About an Invalid Turn

<message
from="'bosworth@games.shakespeare.lit'
id="hysf1v37'
to='richardiii@shakespeare.lit/desktop'
type='error'>
<turn xmlns='http://jabber.org/protocol/mmog#user'>
<play xmlns='http://jabber.org/protocol/mmog/dga"
suit='queen'
col='d"
row="'2"/>
</turn>
<error type='cancel'>
<undefined-condition xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
<invalid-turn xmlns='http://jabber.org/protocol/mmog'/>
</error>
</message>

<presence
from="'bosworth@games.shakespeare.lit/buckingham’
to='richardiii@shakespeare.lit/desktop"’
type='unavailable'>
<invalid-turn xmlns='http://jabber.org/protocol/mmog#user'/>
</presence>

If a spectator sends a turn the service MUST return the following error.

76

Example 61. Service Denies Turn

<message
from="bosworth@games.shakespeare.lit/buckingham'
id="hysf1v37'
to='elizabeth@shakespeare.lit/tablet"'
type='error'>
<turn xmlns='http://jabber.org/protocol/mmog#user'>
<play xmlns='http://jabber.org/protocol/mmog/dga’
suit="'queen'
col='d"
row="'2"/>
</turn>
<error type='auth'>
<forbidden xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</message>

If a player sends a turn while the match status is 'inactive’ or 'paused’ the service MUST send this error:

Example 62. Service Denies Turn Because of Match Status

<message
from='richardiii@shakespeare.lit/desktop’
id="hysf1v37'
to="'bosworth@games.shakespeare.lit'
type='error'>
<turn xmlns='http://jabber.org/protocol/mmog#user'>
<play xmlns='http://jabber.org/protocol/mmog/dga’
suit="'queen'
col="d"
row="'2"/>
</turn>
<error type='cancel'>
<not-allowed xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</message>

If the move is valid, the service MUST distribute the turn. The occupants, who receive the turn are defined
by the game protocol. However, the turn MUST be reflected to the sender.

77

Example 63. Service Reflects Turn to All Occupants

<message

from="'bosworth@games.shakespeare.lit/buckingham'
id="hysf1v37'
to="wcatesby@shakespeare.lit/laptop'
type='groupchat'>

<turn xmlns='http://jabber.org/protocol/mmog#user'>
<play xmlns='http://jabber.org/protocol/mmog/dga’

suit="'queen'

col="d"
row="'2"'/>
</turn>
</message>
<message

from="bosworth@games.shakespeare.lit/buckingham'
id="hysf1v37'
to='elizabeth@shakespeare.lit/tablet"'
type='groupchat'>
<turn xmlns='http://jabber.org/protocol/mmog#user'>
<play xmlns='http://jabber.org/protocol/mmog/dga’
suit='queen'

col='d"
row="'2"'/>
</turn>
</message>
<message

from="'bosworth@games.shakespeare.lit/buckingham’
id="hysf1v37'
to='richardiii@shakespeare.lit/desktop"’
type="'groupchat'>

<turn xmlns='http://jabber.org/protocol/mmog#user'>

<play xmlns='http://jabber.org/protocol/mmog/dga’
suit="'queen'

col="d"'
row="'2"'/>
</turn>
</message>
<message

from="bosworth@games.shakespeare.lit/buckingham'
id="hysf1v37"’
to="harritudur@shakespeare.lit/pda’
type="groupchat'>
<turn xmlns='http://jabber.org/protocol/mmog#user'>
<play xmlns='http://jabber.org/protocol/mmog/dga’
suit="'queen'
col="'d"
row="'2"'/>
</turn>
</message>

78

7.7. Shot in Match

In order to make a shot in a match, a <message/> stanza MUST be send to <room@service/nick> containing a
<turn/> element which contains a <shot> element specifying the shot’s firepoint.

79

Example 64. Occupant sends a Shoot in a Game Turn

<message
from='richardiii@shakespeare.lit/desktop’
id="'daf90om1"

to="'bosworth@games.shakespeare.lit'
type='groupchat'>
<turn xmlns='http://jabber.org/protocol/mmog#user’
tuid="aa7y4m2'>
<pc jid='richardiii@shakespeare.lit/desktop'’
chid="'h7ns81g"
name='richardiii'
visiname='Good Lord'
model="'King"
team="'York'
position='0"'>
<shots>
<shot xmlns='http://jabber.org/protocol/mmog#user’
node="'Turmkanone'
weapon="'KwK42L70"
ammo="'Pzgr39_42"'>

<location x="'"' y="'"' z=""'/>
<rotation x='"' y="'"' z="'"'" w=""'/>
<view x='' y='' z=""/>
<walk x='"' y='"' z=""/>
<linear x='' y='"' z=""/>
<angular x='' y="'"' z=""/>
</shot>
</shots>
</pc>

<npc chid="c12y325"'

name="'Cannon01'

visiname='Dragon'

model="'Cannon'

team="York'

position='0"'>

<shots>

<shot xmlns='http://jabber.org/protocol/mmog#user
node="'Cannon01"'
weapon="'38cmS.K.C/34"'
ammo="'PsgrL/4,4mBdZ'>

<location x='"' y="'"' z=""/>
<rotation x='' y="'"' z=""'" w=""'/>
<view x=''y='' z="'"'/>
<walk x=''y='"' z=""'/>
<linear x="'"' y='"' z="'"'/>
<angular x='"' y="'"' z=""/>
</shot>
</shots>
</npc>
</turn>
</message>

80

The element <shot> CAN include internal elements as the following ones in the table below. Every element
contains attributes defining physical conditions of the player character in the game space.

Table 15: Internal Elements of a Shot

Element Meaning

location The player character’s location in the game space.
rotation The player character’s rotation in the game space.
view The player character’s viewing direction.

walk The player character’s walking direction.

linear The player character’s linear velocity.

angular The player character’s angular velocity.

The element <shot> MUST include the field 'node’ defining the identifier (name) of some part of the player
character.

7.8. Loss in Match

In order to make a loss in a match, a <message/> stanza MUST be send to <room@service/nick> containing a
<turn/> element qualified by 'http://jabber.org/protocol/mmog#user' namespace. Game protocols SHOULD
place own elements defining the turn inside the <turn/> element.

Aloss is defined in the element of the same name <loss> which MUST be included within the element <pc> of
an appropriate playing character.

81

Example 65. Occupant Sends a Loss in a Game Turn

<message
from='richardiii@shakespeare.lit/desktop"’
id="'dafo0om1"

to="bosworth@games.shakespeare.lit'
type='groupchat'>
<turn xmlns='http://jabber.org/protocol/mmog#user’
tuid="'aa7y4m2'>
<pc jid='richardiii@shakespeare.lit/desktop'’
chid="'h7ns81g"
name='richardiii’
visiname='Good Lord'
model="'King"
team="'York'
position='0"'>
<losses>
<loss xmlns='http://jabber.org/protocol/mmog#user’
node="'Tank'>

<location x="'"' y="'"' z=""'/>
<rotation x='' y="'"' z=""'" w=""'/>
<view x='' y='' z=""/>

<walk x='"' y='"' z=""/>

<linear x='' y='"' z=""/>
<angular x='' y="'"' z=""/>

<power value=''/>
</loss>
<loss xmlns='http://jabber.org/protocol/mmog#user’
node="Hull'>

<location x='"' y="'"' z=""'/>
<rotation x='"' y="'"' z=""' w=""/>
<view x=''y='"' z="'"'/>

<walk x='"'y='"' z=""'/>

<linear x="'"' y='" z="'"'/>
<angular x='"' y="'"' z=""/>

<power value=''/>
</loss>
</losses>
</pc>
<npc chid="'d72d91y"’
name="House01'
visiname="Watchtower'
model="'Building’
team="York'
position='0"'>
<losses>
<loss xmlns='http://jabber.org/protocol/mmog#user
node="'House01'>

<location x='"' y=""' z=""/>
<rotation x='' y="'"' z=""' w=""'/>
<view x='' y='' z=""/>

<walk x=''y='"' z=""'/>

<linear x='"' y='"' z="'"'/>

<angular x='' y="'"' z=""/>
<power value=''/>
</loss>
</losses>
</npc>
</turn>
</message>

82

The element <loss> CAN include internal elements as the following ones in the table below. Every element
contains attributes defining physical conditions of the player character in the game space.

Table 16: Internal Elements of a Loss

Element Meaning

location The player character’s location in the game space.
rotation The player character’s rotation in the game space.
view The player character’s viewing direction.

walk The player character’s walking direction.

linear The player character’s linear velocity.

angular The player character’s angular velocity.

The element <loss> MUST include the field 'node' defining the identifier (name) of some part of the player
character.

7.9. Repair in Match

In order to make a repair in a match, a <message/> stanza MUST be send to <room@service/nick> containing
a <turn/> element qualified by 'http://jabber.org/protocol/mmog#user' namespace. Game protocols SHOULD
place own elements defining the turn inside the <turn/> element.

A repair is defined in the element of the same name <repair> which MUST be included within the element
<pc> of an appropriate playing character.

83

Example 66. Occupant Sends a Repair in a Game Turn

<message
from='richardiii@shakespeare.lit/desktop’
id="'daf90om1"

to="'bosworth@games.shakespeare.lit'
type='groupchat'>
<turn xmlns='http://jabber.org/protocol/mmog#user’
tuid="aa7y4m2'>
<pc jid='richardiii@shakespeare.lit/desktop'’
chid='h7ns81g"
name='richardiii'
visiname='Good Lord'
model="'King"
team="'York'
position='0"'>
<repairs>
<repair xmlns='http://jabber.org/protocol/mmog#user’'
node="'Tank'>

<location x='"' y="'"' z=""'/>
<rotation x='' y="'"' z=""'" w=""'/>
<view x='' y='"' z=""/>
<walk x='' y='"' z=""/>
<linear x='' y='"' z=""/>
<angular x='' y="'"' z=""/>
<power value='"'/>

</repair>

<repair xmlns='http://jabber.org/protocol/mmog#user’
node="'Hull'>

<location x='"' y="'"' z=""'/>
<rotation x='"' y='"' z=""' w=""/>
<view x=''y='"' z="'"'/>
<walk x=''y='"' z=""'/>
<linear x="'"' y='"' z="'"'/>
<angular x='"' y="'"' z=""/>
<power value=''/>

</repair>

</repairs>
</pc>
<npc chid="'d72d91y"

name="'House01"'
visiname='Watchtower"
model='Building’

team="York'
position='0"'>

<repairs>
<repair xmlns='http://jabber.org/protocol/mmog#user’
node='House01"'>

<location x='"' y="'"' z=""/>
<rotation x='' y="'"' z=""' w=""'/>
<view x='' y='' z=""/>

<walk x=''y='"' z=""'/>

<linear x='"' y='"' z="'"'/>

<angular x='"' y="'"' z=""/>
<power value=''/>
</repair>
</repairs>
</npc>
</turn>
</message>

84

The element <repair> CAN include internal elements as the following ones in the table below. Every element
contains attributes defining physical conditions of the player character in the game space.

Table 17: Internal Elements of a Repair

Element Meaning

location The player character’s location in the game space.
rotation The player character’s rotation in the game space.
view The player character’s viewing direction.

walk The player character’s walking direction.

linear The player character’s linear velocity.

angular The player character’s angular velocity.

The element <repair> MUST include the field 'node’ defining the identifier (name) of some part of the player
character.

7.10. Match Resignation

If a client wants to resign, he sends the following.

Example 67. User Resigns

<presence
from="'richardiii@shakespeare.lit/desktop"’
to="'england@games.shakespeare.lit'>
<game xmlns='http://jabber.org/protocol/mmog'>
<item role='none'/>
</game>
</presence>

Afterwards, the service decides whether to cancel or pause the match based on the game specification.

7.11. Match Termination

The game protocol respectively the game protocol implementation decides when a match is over. In the case
of game termination, the service MUST notify every player through updated presence including the resulting
final state.

85

Example 68. Service Sends Termination Broadcast to All Players

<presence
from="'england@games.shakespeare.lit'
to="wcatesby@shakespeare.lit/laptop'>
<game xmlns='http://jabber.org/protocol/mmog"'>
<status>inactive</status>
<state xmlns='http://jabber.org/protocol/mmog/dga'>
<won>York</won>
</state>
</game>
</presence>

<presence
from="'england@games.shakespeare.lit'
to='elizabeth@shakespeare.lit/tablet'>
<game xmlns='http://jabber.org/protocol/mmog"'>
<status>inactive</status>
<state xmlns='http://jabber.org/protocol/mmog/dga'>
<won>York</won>
</state>
</game>
</presence>

<presence
from='england@games.shakespeare.lit"'
to='richardiii@shakespeare.lit/desktop'>
<game xmlns='http://jabber.org/protocol/mmog">

<status>inactive</status>
<state xmlns='http://jabber.org/protocol/mmog/dga'>
<won>York</won>
</state>
</game>
</presence>

7.12. Sending a Message to All Occupants

An occupant sends a message to all other occupants in the room by sending a message of type "groupchat" to
the <room@service> itself (a service MAY ignore or reject messages that do not have a type of "groupchat").
In a moderated room, this privilege is restricted to occupants with a role of participant or higher.

Example 69. Occupant Sends a Message to All Occupants

<message
from="harritudur@shakespeare.lit/pda’
id="hysf1v37"’
to='england@games.shakespeare.lit'
type="groupchat'>
<body>How far into the morning is it, lords?</body>
</message>

If the sender has voice in the room (this is the default except in moderated rooms) and the message does not
violate any service-level or room-level policies (e.g., policies regarding message content or size), the service

86

MUST change the 'from’ attribute to the sender’s occupant JID and reflect the message out to the full JID of
each occupant.

Example 70. Service Reflects Message to All Occupants

<message
from='england@games.shakespeare.lit/earl1’
id="hysf1v37'
to='richardiii@shakespeare.lit/desktop"’
type='groupchat'>
<body>How far into the morning is it, lords?</body>
</message>

<message
from='england@games.shakespeare.lit/earl1’
id="hysf1v37'
to="wcatesby@shakespeare.lit/laptop'
type='groupchat'>
<body>How far into the morning is it, lords?</body>
</message>

<message
from="'england@games.shakespeare.lit/earl1"’
id="hysf1v37'
to="'thomasstanley@shakespeare.lit/cell"’
type='groupchat'>
<body>How far into the morning is it, lords?</body>
</message>

The service SHOULD reflect the message with the same 'id' that was generated by the client, to allow clients
to track their outbound messages. If the client did not provide an 'id', the server MAY generate an 'id' and
use it for all reflections of the same message (e.g. using a UUID as defined in RFC 4122).

Note: the requirement to reflect the 'id" attribute was added in version 1.31 of the XEP MUC.
Servers following that specification SHOULD advertise that with a disco info feature of
'http://jabber.org/protocol/mmog#stable_id' on both the service domain and on individual
MMOGs, so that clients can check for support.

If the sender is a visitor (i.e., does not have voice in a moderated room), the service MUST return a
<forbidden/> error to the sender and MUST NOT reflect the message to all occupants. If the sender is not an
occupant of the room, the service SHOULD return a <not-acceptable/> error to the sender and SHOULD NOT
reflect the message to all occupants; the only exception to this rule is that an implementation MAY allow
users with certain privileges (e.g., a room owner, room admin, or service-level admin) to send messages to
the room even if those users are not occupants.

7.13. Sending a Private Message

Since each occupant has its own occupant JID, an occupant can send a "private message" to a selected
occupant via the service by sending a message to the intended recipient’s occupant JID. The message type

87

SHOULD be "chat" and MUST NOT be "groupchat”, but MAY be left unspecified (i.e., a normal message). This
privilege is controlled by the "mmog#roomconfig_allowpm" room configuration option.

To allow for proper synchronization of these messages to the user’s other clients by Message Carbons (XEP-
0280), the sending client SHOULD add an <game/> element qualified by the
'http://jabber.org/protocol/mmog#user' namespace to the message.

Note: because this requirement was only added in revision 1.28 of the XEP MUC, receiving
entities MUST NOT rely on the existence of the <game/> element on private messages for
proper processing.

Example 71. Occupant Sends Private Message

<message
from="wcatesby@shakespeare.lit/laptop’
id='hgn27af1’
to="'england@games.shakespeare.lit/king'’
type='chat'>
<body>Rescue, fair lord, or else the day is lost!</body>
<game xmlns='http://jabber.org/protocol/mmog#user'/>
</message>

The service is responsible for changing the 'from' address to the sender’s occupant JID and delivering the
message to the intended recipient’s full JID. The service SHOULD add the <game/> element if the message
does not contain it already.

Example 72. Recipient Receives the Private Message

<message
from="england@games.shakespeare.lit/sirwilliam’
id='hgn27af1’
to='richardiii@shakespeare.lit/desktop"’
type='chat'>
<body>A horse! a horse! my kingdom for a horse!</body>

<game xmlns='http://jabber.org/protocol/mmog#user'/>
</message>

If the sender attempts to send a private message of type "groupchat" to a particular occupant, the service
MUST refuse to deliver the message (since the recipient’s client would expect in-room messages to be of type
"groupchat”) and return a <bad-request/> error to the sender:

88

Example 73. Occupant Attempts to Send a Message of Type "Groupchat" to a Particular Occupant

<message
from="wcatesby@shakespeare.lit/laptop"’
id="bx71f29k"
to="'england@games.shakespeare.lit/king'
type='groupchat'>
<body>Rescue, fair lord, or else the day is lost!</body>
</message>

<message
from="'england@games.shakespeare.lit/king'
id="bx71f29k"
to="wcatesby@shakespeare.lit/laptop'
type='error'>
<body>Rescue, fair lord, or else the day is lost!</body>
<error by='england@games.shakespeare.lit' type='modify'>
<bad-request xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</message>

If the sender attempts to send a private message to an occupant JID that does not exist, the service MUST
return an <item-not-found/> error to the sender.

If the sender is not an occupant of the room in which the intended recipient is visiting, the service MUST
return a <not-acceptable/> error to the sender.

7.14. Changing Nickname

A common feature of game rooms is the ability for an occupant to change his or her nickname within the
room. In MMOG this is done by sending updated presence information to the room, specifically by sending
presence to a new occupant JID in the same room (changing only the resource identifier in the occupant JID).

Example 74. Occupant Changes Nickname

<presence
from="harritudur@shakespeare.lit/pda’
id="ifd1c35"
to="'england@games.shakespeare.lit/henryvii'>
<game xmlns='http://jabber.org/protocol/mmog'/>
</presence>

The service then sends two presence stanzas to the full JID of each occupant (including the occupant who is
changing his or her room nickname), one of type "unavailable" for the old nickname and one indicating
availability for the new nickname.

The unavailable presence MUST contain the following as extended presence information in an <game/>
element qualified by the 'http://jabber.org/protocol/mmog#user' namespace:

¢ The new nickname (in this case, nick="henryvii')

e A status code of 303

89

This enables the recipients to correlate the old roomnick with the new roomnick.

90

Example 75. Service Updates Nick

<presence

from='england@games.shakespeare.lit/earl1'game
id='5C1B95B3-7CCC-4422-A952-8885A050BDE9"'
to='richardiii@shakespeare.lit/desktop"'
type='unavailable'>

<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='member'

jid="harritudur@shakespeare.lit/pda'’
nick="henryvii'
role='participant'/>
<status code='303"'/>
</game>
</presence>

<presence
from="'england@games.shakespeare.lit/earl1"’
id="'BOE6ABD5-575D-42F0-8242-569004D88F73"
to="wcatesby@shakespeare.lit/laptop'
type='unavailable'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='member'
jid="harritudur@shakespeare.lit/pda’
nick="henryvii'
role="participant'/>
<status code='303"'/>
</game>
</presence>

<presence
from='england@games.shakespeare.lit/earl1’
id='DC352437-C019-40EC-B590-AF29E879AF98"
to="harritudur@shakespeare.lit/pda’
type='unavailable'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='member'
jid="harritudur@shakespeare.lit/pda’
nick="henryvii'
role="participant'/>
<status code='303'/>
<status code='110'/>
</game>
</presence>

<presence
from="england@games.shakespeare.lit/henryvii’
id="19E41EB3-3F4C-444F-8A1B-713A8860980C"
to='richardiii@shakespeare.lit/desktop'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='member'
jid="harritudur@shakespeare.lit/pda’
role="participant'/>
</game>
</presence>

<presence
from='england@games.shakespeare.lit/henryvii'’
id="79225CEA-F610-49BE-9B97-FEFA8737185B"
to="wcatesby@shakespeare.lit/laptop'>
<game xmlns='http://jabber.org/protocol/mmog#user'>

91

If the service modifies the user’s nickname in accordance with local service policies, it MUST include an
MMOG status code of 210 in the presence stanza sent to the user. An example follows (here the service
changes the nickname to all lowercase).

Example 76. Occupant Changes Nickname, Modified by Service

<presence
from="harritudur@shakespeare.lit/pda’
id="nx6z2v5"
to="'england@games.shakespeare.lit/henryvii'/>

<presence
from="england@games.shakespeare.lit/henryvii’
id="'DOE2B666-3373-42C9-B726-D52C40A48383"
to="harritudur@shakespeare.lit/pda'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='member'
jid="harritudur@shakespeare.lit/pda’
role="participant'/>
<status code='110'/>
<status code='210'/>
</game>
</presence>

If the user attempts to change his or her room nickname to a room nickname that is already in use by
another user (or that is reserved by another user affiliated with the room, e.g., a member or owner), the
service MUST deny the nickname change request and inform the user of the conflict; this is done by
returning a presence stanza of type "error" specifying a <conflict/> error condition:

Example 77. Service Denies Nickname Change Because of Nick Conflict

<presence
from='england@games.shakespeare.lit/earl1’
id='ifd1c35"'
to="harritudur@shakespeare.lit/pda’
type="error'>
<game xmlns='http://jabber.org/protocol/mmog'/>
<error by='england@games.shakespeare.lit' type='cancel'>
<conflict xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</presence>

However, if the bare JID <localpart@domain.tld> of the present occupant matches the bare JID of the user
seeking to change his or her nickname, then the service MAY allow the nickname change. See the Nickname
Conflict section of this document for details.

If the user attempts to change their room nickname but nicknames are "locked down", the service MUST
either deny the nickname change request and return a presence stanza of type "error" with a <not-
acceptable/> error condition:

92

mailto:localpart@domain.tld

Example 78. Service Denies Nickname Change Because Roomnicks Are Locked Down

<presence
from='england@games.shakespeare.lit/earl1’
id="ifd1c35"
to="harritudur@shakespeare.lit/pda'’
type='error'>
<game xmlns='http://jabber.org/protocol/mmog'/>
<error by='england@games.shakespeare.lit' type='cancel'>
<not-acceptable xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</presence>

The user SHOULD then discover its reserved nickname as specified in the Discovering Reserved Room
Nickname section of this document.

7.15. Changing Availability Status

In text chat systems such as IRC, one common use for changing one’s room nickname is to indicate a change
in one’s availability (e.g., changing one’s room nickname to "earll|away"). In XMPP, availability is of course
noted by a change in presence (specifically the <show/> and <status/> elements), which can provide
important context within a chatroom. An occupant changes availability status within the room by sending
updated presence to its <room@service/nick>.

Example 79. Occupant Changes Availability Status

<presence
from="'wcatesby@shakespeare.lit/laptop’
id="kr7v143h'
to="'england@games.shakespeare.lit/henryvii'>

<show>xa</show>
<status>Ay, my good lord.</status>
</presence>

If the room is configured to broadcast presence from entities with the occupant’s role, the service then sends
a presence stanza from the occupant changing his or her presence to the full JID of each occupant, including
extended presence information about the occupant’s role and full JID to those with privileges to view such
information:

93

Example 80. Service Passes Along Changed Presence to All Occupants

<presence
from='england@games.shakespeare.lit/sirwilliam'
id="86E11ABF-26BC-46F1-AD3B-F5E54F3C1EES"
to='richardiii@shakespeare.lit/desktop'>
<show>xa</show>
<status>Ay, my good lord.</status>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='admin'
jid='wcatesby@shakespeare.lit/laptop'
role="moderator'/>
</game>
</presence>

[coa]

7.16. Inviting Another User to a Room

There are two ways of inviting another user to a room: direct invitations and mediated invitations.

Direct invitations were the original method used in the early Jabber community’s "groupchat 1.0" protocol.
Mediated invitations were added in Multi-User Chat as a way to handle invitations in the context of
members-only rooms (so that the room could exercise control over the issuance of invitations). The
existence of two different invitation methods might cause confusion among client developers. Because the
room needs to be involved in the invitation process only for members-only rooms, because members-only
rooms are relatively rare, and because mediated invitations do not work when Privacy Lists (XEP-0016) or
similar technologies are used to block communication from entities not in a user’s roster, client developers
are encouraged to use direct invitations for all other room types.

7.16.1 Direct Invitation

A method for sending a direct invitation (not mediated by the room itself) is defined in Direct MUC
Invitations (XEP-0249). Sending the invitation directly can help to work around communications blocking on
the part of the invitee (which might reject or discard messages from entities not in its roster).

7.16.2. Mediated Invitation

It can be useful to invite another user to a room in which one is an occupant. To send a mediated invitation,
an MMOG client MUST send XML of the following form to the <room@service> itself (the reason is
OPTIONAL and the message MUST be explicitly or implicitly of type "normal"):

94

Example 81. Occupant Sends a Mediated Invitation

<message
from="wcatesby@shakespeare.lit/laptop"’
id="'nzd143v8"’
to='england@games.shakespeare.lit'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<invite to='whastings@shakespeare.lit'>
<reason>
God keep your lordship in that gracious mind!
</reason>
</invite>
</game>
</message>

The <room@service> itself MUST then add a 'from' address to the <invite/> element whose value is the bare
JID, full JID, or occupant JID of the inviter and send the invitation to the invitee specified in the 'to" address;
the room SHOULD add the password if the room is password-protected):

Example 82. Room Sends Invitation to Invitee on Behalf of Invitor

<message
from='england@games.shakespeare.lit"'
id='nzd143v8’
to="'whastings@shakespeare.lit'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<invite from='wcatesby@shakespeare.lit/laptop'>
<reason>
God keep your lordship in that gracious mind!
</reason>
</invite>
<password>dieuetmondroit</password>
</game>
</message>

If the room is members-only, the service MAY also add the invitee to the member list. (Note: Invitation
privileges in members-only rooms SHOULD be restricted to room admins; if a member without privileges to
edit the member list attempts to invite another user, the service SHOULD return a <forbidden/> error to the
occupant; for details, see the Modifying the Member List section of this document.)

Implementation Note: In the past, it was specified that a <game
xmlns="jabber:x:conference'> element with the reason as text payload was to be included in
the mediated invitation as sent by the room. While this has since been removed from this
specification, implementations should be aware that there still exist server implementations
which emit that payload for compatibility reasons.

If the inviter supplies a non-existent JID, the room SHOULD return an <item-not-found/> error to the inviter.

95

https://xmpp.org/extensions/attic/jep-0045-1.19.html#invite

The invitee MAY choose to formally decline (as opposed to ignore) the invitation; and this is something that
the sender might want to be informed about. In order to decline the invitation, the invitee MUST send a
message of the following form to the <room@service> itself:

Example 83. Invitee Declines Invitation

<message
from="whastings@shakespeare.lit/smartphone’
id="jk2vs61v'
to='england@games.shakespeare.lit'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<decline to='sirwilliam@shakespeare.lit'>
<reason>
I'11 wait upon your lordship.
</reason>
</decline>
</game>
</message>

Example 84. Room Informs Invitor that Invitation Was Declined

<message
from='england@games.shakespeare.lit"'
id="jk2vs61v'
to="wcatesby@shakespeare.lit/laptop'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<decline from='whastings@shakespeare.lit'>
<reason>
I'11 wait upon your lordship.
</reason>
</decline>
</game>
</message>

It may be wondered why the invitee does not send the decline message directly to the inviter. The main
reason is that certain implementations might choose to base invitations on occupant JIDs rather than bare
JIDs (so that, for example, an occupant could invite someone from one room to another without knowing
that person’s bare JID). Thus the service needs to handle both the invites and declines.

7.17. Converting a One-to-One Game Into a Multi-User Game

Sometimes it is desirable to convert a one-to-one game into a multi-user game. The process is as follows.

First, two users begin a one-to-one game.

96

Example 85. A One-to-One Game

<message
from='richardiii@shakespeare.lit/desktop’
id="mjs51f36"
to="wcatesby@shakespeare.lit/laptop'
type='chat'>
<thread>e0ffe42b28561960c6b12b944a092794b9683a38</thread>
<start xmlns='http://jabber.org/protocol/mmog#user"'/>
</message>

<message
from="wcatesby@shakespeare.lit/laptop'
id="'19ij1f3h'
to='richardiii@shakespeare.lit/desktop'
type='chat'>
<thread>e0ffe42b28561960c6b12b944a092794b9683a38</thread>
<start xmlns='http://jabber.org/protocol/mmog#user"'/>
</message>

Now the first person decides to include a third person in the game, so she does the following:

1. Creates a new multi-user game room

2. Sends history of the one-to-one game to the room (this is purely discretionary; however, because it
might cause information leakage, the client ought to warn the user before doing so)

3. Sends an invitation to the second person and the third person, including a <continue/> element
(optionally including a 'thread' attribute).

Note: The new room SHOULD be non-anonymous and MAY be an instant room as specified
in the Creating an Instant Room section of this document.

Note: If the one-to-one game messages included a <thread/> element, the person who
creates the room SHOULD include the ThreadID with the history messages, specify the
ThreadID in the invitations as the value of the <continue/> element’s 'thread' attribute, and
include the ThreadID in any new messages sent to the room. Use of ThreadIDs is
RECOMMENDED because it helps to provide continuity between the one-to-one game and
the multi-user game.

97

Example 86. Continuing the Game I: User Creates Room

<presence
from='richardiii@shakespeare.lit/desktop’
to='england@games.shakespeare.lit/king'>
<game xmlns='http://jabber.org/protocol/mmog'/>
</presence>

<presence
from="'england@games.shakespeare.lit/king'
to='richardiii@shakespeare.lit/desktop'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='owner' role='moderator'/>
<status code='110"'/>
</game>
</presence>

98

Example 87. Continuing the Game II: Owner Sends History to Room

<message
from='richardiii@shakespeare.lit/desktop’
id="b4va73n0"’
to='england@games.shakespeare.lit'
type='groupchat'>
<thread>e0ffe42b28561960c6b12b944a092794b9683a38</thread>
<start xmlns='http://jabber.org/protocol/mmog#user'/>
<delay xmlns='urn:xmpp:delay'
from="'richardiii@shakespeare.lit/desktop"’
stamp='2019-09-09T09:26:37Z2'>
<turn xmlns='http://jabber.org/protocol/mmog#user'>
<play xmlns='http://jabber.org/protocol/mmog/dga’
suit="queen'
col='d"
row="'2"/>
</turn>
</delay>
</message>

<message
from='richardiii@shakespeare.lit/desktop’
id='i4hs759k"'
to="'england@games.shakespeare.lit"’
type="'groupchat'>
<thread>e0ffe42b28561960c6b12b944a092794b9683a38</thread>
<start xmlns='http://jabber.org/protocol/mmog#user'/>
<delay xmlns='urn:xmpp:delay’
from='richardiii@shakespeare.lit/desktop’
stamp="'2019-09-09T09:26:427"'>
<turn xmlns='http://jabber.org/protocol/mmog#user'>
<play xmlns='http://jabber.org/protocol/mmog/dga’
suit="'bishop'
col="e'
row="4"'/>
</turn>
</delay>
</message>

Note: Use of the Delayed Delivery (XEP-0203) protocol enables the room creator to specify
the datetime of each message from the one-to-one game history (via the 'stamp' attribute), as
well as the JID of the original sender of each message (via the 'from' attribute); note well that

the 'from' here is not the room itself, since the originator of the message is the delaying
party. The room creator might send the complete one-to-one game history before inviting
additional users to the room, and also send as history any messages appearing in the one-to-

one game interface after joining the room and before the second person joins the room; if
the one-to-one history is especially large, the sending client might want to send the history

over a few seconds rather than all at once (to avoid triggering rate limits). The service

99

SHOULD NOT add its own delay elements (as described in the Discussion History section of
this document) to prior game history messages received from the room owner.

Example 88. Continuing the Discussion III: Owner Sends Invitations, Including Continue Flag

<message
from='richardiii@shakespeare.lit/desktop’
id='gl3s85n7"'
to='england@games.shakespeare.lit'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<invite to='wcatesby@shakespeare.lit/laptop'>
<reason>This battle needs both sirwilliam and earlil.</reason>
<continue thread='e0ffe42b28561960c6b12b944a092794b9683a38"'/>
</invite>
<invite to='harritudur@shakespeare.lit/pda'>
<reason>This battle needs both sirwilliam and earli1.</reason>
<continue thread='e0ffe42b28561960c6b12b944a092794b9683a38"'/>
</invite>
</game>
</message>

Note: Since the inviter’s client knows the full JID of the person with whom the inviter was
having a one-to-one game, it SHOULD include the full JID (rather than the bare JID) in its
invitation to that user.

The invitations are delivered to the invitees:

100

Example 89. Invitations Delivered

<message
from='england@games.shakespeare.lit/king'
id="'DB0414CB-AFBA-407E-9DE3-0E014E84860F'
to="wcatesby@shakespeare.lit/laptop'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<invite from='king@shakespeare.lit'>
<reason>This battle needs both sirwilliam and earli.</reason>
<continue thread='e0ffe42b28561960c6b12b944a092794b9683a38"'/>
</invite>
</game>
</message>

<message
from="'england@games.shakespeare.lit/king'
id='89028D79-AB4C-44C0-BE81-B07607C2F4C2"
to="harritudur@shakespeare.lit/pda'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<invite from='king@shakespeare.lit'>
<reason>This battle needs both sirwilliam and earli.</reason>
<continue thread='e0ffe42b28561960c6b12b944a092794b9683a38"'/>
</invite>
</game>
</message>

When the client being used by <wcateshy@shakespeare.lit/laptop> receives the invitation, it can either auto-
join the room or prompt the user whether to join (subject to user preferences) and then seamlessly convert
the existing one-to-one game window into a multi-user gaming window:

101

mailto:wcatesby@shakespeare.lit

Example 90. Invitee Accepts Invitation, Joins Room, and Receives Presence and History

<presence
from='richardiii@shakespeare.lit/desktop’
to='england@games.shakespeare.lit/sirwilliam'>
<game xmlns='http://jabber.org/protocol/mmog'/>
</presence>

<presence
from="'england@games.shakespeare.lit/king'
to="wcatesby@shakespeare.lit/laptop'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='owner' role='moderator'/>
</game>
</presence>

<presence
from="'england@games.shakespeare.lit/sirwilliam'
to="'wcatesby@shakespeare.lit/laptop'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='member' role='participant'/>
</game>
</presence>

<message
from='england@games.shakespeare.lit"'
id='67268D36-100C-457D-A769-8A3663BD1949"
to="'wcatesby@shakespeare.lit/laptop’
type="'groupchat'>
<thread>e0ffe42b28561960c6b12b944a092794b9683a38</thread>
<start xmlns="'http://jabber.org/protocol/mmog#user'/>
<delay xmlns='urn:xmpp:delay’
from="richardiii@shakespeare.lit/desktop"’
stamp="'2019-09-09T09:26:37Z"'>
<turn xmlns='http://jabber.org/protocol/mmog#user'>
<play xmlns='http://jabber.org/protocol/mmog/dga’
suit="'queen'

col="d'
row="'2"/>
</turn>
</delay>
</message>

<message
from='england@games.shakespeare.lit"'
id="'367DCF6B-0CB4-482D-A142-COB9E08016B5"
to="wcatesby@shakespeare.lit/laptop"’
type="groupchat'>
<thread>e0ffe42b28561960c6b12b944a092794b9683a38</thread>
<start xmlns="http://jabber.org/protocol/mmog#user'/>
<delay xmlns='urn:xmpp:delay’
from='richardiii@shakespeare.lit/desktop’
stamp='2019-09-09T09:26:427"'>
<turn xmlns='http://jabber.org/protocol/mmog#user'>
<play xmlns='http://jabber.org/protocol/mmog/dga’
suit="bishop'

col='e'
row="4"/>
</turn>
</delay>
</message>

102

7.18. Registering with a Room

An implementation MAY allow an unaffiliated user (in a moderated room, normally a participant) to register
with a room; as a result, the user will become a member of the room and will have their preferred nickname
reserved in the room. (Conversely, an implementation MAY restrict this privilege and allow only room
admins to add new members.) In particular, it is not possible to join a members-only room without being on
the member list, so an entity might need to request membership in order to join such a room.

If allowed, this functionality SHOULD be implemented by enabling a user to send a request for registration
requirements to the room qualified by the ‘'jabber:ig:register' namespace as described in In-Band
Registration (XEP-0077):

Example 91. User Requests Registration Requirements

<iq from='harritudur@shakespeare.lit/pda’
id="'jw81b36f"'
to="england@games.shakespeare.lit'

type="get'>
<query xmlns='jabber:iq:register'/>
</iq>

If the room does not exist, the service MUST return an <item-not-found/> error.

Example 92. Room Does Not Exist

<iq from='england@games.shakespeare.lit'
id="jw81b36f"
to="harritudur@shakespeare.lit/pda’
type='error'>
<error type='cancel'>
<item-not-found xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</ig>

If the user requesting registration requirements is not allowed to register with the room (e.g., because that
privilege has been restricted), the room MUST return a <not-allowed/> error to the user.

Example 93. User Is Not Allowed to Register

<iq from='england@games.shakespeare.lit'
id="jw81b36f"
to="harritudur@shakespeare.lit/pda’
type='error'>
<error type='cancel'>
<not-allowed xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</iq>

If the user is already registered, as described in In-Band Registration (XEP-0077) the room MUST reply with
an IQ stanza of type "result", which MUST contain an empty <registered/> element and SHOULD contain at
least a <username/> element that specifies the user’s registered nickname in the room.

103

Example 94. User Is Already Registered

<iq from='england@games.shakespeare.lit'
id='jw81b36f"
to="harritudur@shakespeare.lit/pda'’
type='result'>
<query xmlns='jabber:iq:register'>
<registered/>
<username>earl1</username>
</query>
</ig>

Otherwise, the room MUST then return a Data Form to the user (as described in Data Forms (XEP-0004)). The
information required to register might vary by implementation or deployment and is not fully specified in
this document (e.g., the fields registered by this document for the 'http://jabber.org/protocol/mmog#register’
FORM_TYPE might be supplemented in the future via the mechanisms described in the Field
Standardization section of this document). The following can be taken as a fairly typical example:

104

Example 95. Service Returns Registration Form

<iq from='england@games.shakespeare.lit'
id="'jw81b36f"
to="harritudur@shakespeare.lit/pda'’
type='result'>
<query xmlns='jabber:iq:register'>
<instructions>
To register on the web, visit http://shakespeare.lit/
</instructions>
<x xmlns='jabber:x:data' type='form'>
<title>The Wars of the Roses Registration</title>
<instructions>
Please provide the following information
to register with this room.
</instructions>
<field
type='hidden'
var="'FORM_TYPE'>
<value>http://jabber.org/protocol/mmog#register</value>
</field>
<field
label="Given Name'
type="'text-single’
var="mmog#register_first'>
<required/>
</field>
<field
label="Family Name'
type="'text-single’
var='mmog#register_last'>
<required/>
</field>
<field
label="Desired Nickname'
type="'text-single’
var="mmog#register_roomnick'>
<required/>
</field>
<field
label="Your URL'
type="'text-single’
var="mmog#register_url'/>
<field
label="Email Address’
type="text-single’
var="mmog#register_email'/>
<field
label="FAQ Entry'
type="text-multi’
var="mmog#register_fagentry'/>
</x>
</query>
</ig>

105

The user SHOULD then submit the form:

Example 96. User Submits Registration Form

<iq from='harritudur@shakespeare.lit/pda’
id='nv71va54'
to='england@games.shakespeare.lit'
type="set'>
<query xmlns='jabber:iq:register'>
<x xmlns="'jabber:x:data' type='submit'>
<field var='FORM_TYPE'>
<value>http://jabber.org/protocol/mmog#register</value>
</field>
<field var='mmog#register_first'>
<value>Harri</value>
</field>
<field var='mmog#register_last'>
<value>Tudur</value>
</field>
<field var="'mmog#register_roomnick'>
<value>earli</value>
</field>
<field var="mmog#register_url'>
<value>http://thewarsoftheroses.net/harri-tudur/</value>
</field>
<field var="mmog#register_email'>
<value>harri.tudur@thewarsoftheroses.net</value>
</field>
<field var="mmog#register_faqentry'>
<value>Henry Tudor, the Earl of Richmond.</value>
</field>
</ x>
</query>
</iq>

If the desired room nickname is already reserved for that room, the room MUST return a <conflict/> error to
the user:

Example 97. Room Returns Conflict Error to User

<iq from='england@games.shakespeare.lit'
id='nv71va54'
to="harritudur@shakespeare.lit/pda’
type='error'>
<error type='cancel'>
<conflict xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</ig>

If the room or service does not support registration, it MUST return a <service-unavailable/> error to the
user:

106

Example 98. Room Returns Service Unavailable Error to User

<iq from='england@games.shakespeare.lit'
id="'nv71va54'
to="harritudur@shakespeare.lit/pda'’
type='error'>
<error type='cancel'>
<service-unavailable xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</ig>

If the user did not include a valid data form, the room MUST return a <bad-request/> error to the user:

Example 99. Room Returns Service Bad Request Error to User

<iq from='england@games.shakespeare.lit'
id='nv71va54'
to="harritudur@shakespeare.lit/pda’
type='error'>
<error type='modify'>
<bad-request xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</iq>

Otherwise, the room MUST inform the user that the registration request was successfully received:

Example 100. Room Informs User that Registration Request Has Been Processed

<iq from='england@games.shakespeare.lit'
id='nv71va54'
to="harritudur@shakespeare.lit/pda’
type="result'/>

After the user submits the form, the service MAY request that the submission be approved by a room
admin/owner (see the Approving Registration Requests section of this document), MAY immediately add the
user to the member list by changing the user’s affiliation from "none" to "member", or MAY perform some
service-specific checking (e.g., email verification).

If the service changes the user’s affiliation and the user is in the room, it MUST send updated presence from
this individual to all occupants, indicating the change in affiliation by including a <game/> element qualified
by the 'http://jabber.org/protocol/mmog#user' namespace and containing an <item/> child with the
‘affiliation’ attribute set to a value of "member™".

107

Example 101. Service Sends Notice of Membership to All Occupants

<presence
from='england@games.shakespeare.lit/earl1’
to='richardiii@shakespeare.lit/desktop'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='member'
jid="harritudur@shakespeare.lit/pda'’
role='participant'/>
</game>
</presence>

[coo]

If the user’s nickname is modified by the service as a result of registration and the user is in the room, the
service SHOULD include status code "210" in the updated presence notification that it sends to all users.

If a user has registered with a room, the room MAY choose to restrict the user to use of the registered
nickname only in that room. If it does so, it SHOULD modify the user’s nickname to be the registered
nickname (instead of returning a <not-acceptable/> error) if the user attempts to join the room with a
roomnick other than the user’s registered roomnick (this enables a room to "lock down" roomnicks for
consistent identification of occupants).

7.19. Getting the Member List

If allowed in accordance with room configuration, an occupant MAY be allowed to retrieve the list of room
members. For details, see the Modifying the Member List section of this document.

7.20. Discovering Reserved Room Nickname

A user MAY have a reserved room nickname, for example through explicit room registration, database
integration, or nickname "lockdown". A user SHOULD discover his or her reserved nickname before
attempting to enter the room. This is done by sending a Service Discovery information request to the room
JID while specifying a well-known Service Discovery node of "x-roomuser-item".

Example 102. User Requests Reserved Nickname

<iq from='harritudur@shakespeare.lit/pda’
id='getnick1'
to="'england@games.shakespeare.lit"’
type="get'>
<query xmlns='http://jabber.org/protocol/disco#info’
node='x-roomuser-item'/>
</ig>

It is OPTIONAL for a multi-user game service to support the foregoing service discovery node. If the room
or service does not support the foregoing service discovery node, it MUST return a <feature-not-
implemented/> error to the user. If it does and the user has a registered nickname, it MUST return the
nickname to the user as the value of the name' attribute of a Service Discovery <identity/> element (for
which the category/type SHOULD be "game/multi-user"):

108

Example 103. Room Returns Nickname

<iq from='england@games.shakespeare.lit'
id='getnick1'
to="harritudur@shakespeare.lit/pda'’
type='result'>
<query xmlns='http://jabber.org/protocol/disco#info'
node='x-roomuser-item'>
<identity
category="'game'
name='earl?’
type='multi-user'/>
</query>
</ig>

If the user does not have a registered nickname, the room MUST return a service discovery <query/>
element that is empty (in accordance with Service Discovery (XEP-0030)).

Even if a user has registered one room nickname, the service SHOULD allow the user to specify a different
nickname on entering the room (e.g., in order to join from different client resources), although the service
MAY choose to "lock down" nicknames and therefore deny entry to the user, including a <not-acceptable/>
error. The service MUST NOT return an error to the user if his or her client sends the foregoing request after
having already joined the room, but instead SHOULD reply as previously described.

If another user attempts to join the room with a nickname reserved by the first user, the service MUST deny
entry to the second user and return a <conflict/> error as previously described.

7.21. Requesting Voice

It is not possible for a visitor to speak (i.e., send a message to all occupants) in a moderated room. To
request voice, a visitor SHOULD send a <message/> stanza containing a data form to the room itself, where
the data form contains only a "mmog#role" field with a value of "participant”.

Example 104. Occupant Requests Voice

<message from='harritudur@shakespeare.lit/pda’
id="yd53c486"
to='england@games.shakespeare.lit'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<x xmlns='jabber:x:data' type='submit'>
<field var='FORM_TYPE'>
<value>http://jabber.org/protocol/mmog#request</value>
</field>
<field var='mmog#role'
type='list-single’
label="'Requested role'>
<value>participant</value>
</field>
</x>
</game>
</message>

109

The service then proceeds as described in the Approving Voice Requests section of this document.

7.22. Exiting a Room

In order to exit a multi-user game room, an occupant sends a presence stanza of type "unavailable" to the
<room@service/nick> it is currently using in the room.

Example 105. Occupant Exits a Room

<presence
from="harritudur@shakespeare.lit/pda’
to="'england@games.shakespeare.lit/earl1"’
type='unavailable'/>

The service MUST then send a presence stanzas of type "unavailable" from the departing user’s occupant JID
to the departing occupant’s full JIDs, including a status code of "110" to indicate that this notification is "self-
presence™:

Example 106. Service Sends Self-Presence Related to Departure of Occupant

<presence
from='england@games.shakespeare.lit/earl1’
to="harritudur@shakespeare.lit/pda’
type='unavailable'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation="'member'
jid="harritudur@shakespeare.lit/pda’
role='none'/>
<status code='110'/>
</game>
</presence>

Note: The presence stanza used to exit a room MUST possess a 'type"' attribute whose value is
"unavailable". For further discussion, see the Presence business rules.

The service MUST then send presence stanzas of type "unavailable" from the departing user’s occupant JID to
the full JIDs of the remaining occupants:

110

Example 107. Service Sends Presence Related to Departure of Occupant

<presence
from='england@games.shakespeare.lit/earl1’
to="harritudur@shakespeare.lit/pda'’
type='unavailable'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='member'
jid="harritudur@shakespeare.lit/pda’
role='none'/>
<status code='110"'/>
</game>
</presence>

<presence
from="'england@games.shakespeare.lit/earl1"’
to='richardiii@shakespeare.lit/desktop'
type='unavailable'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='member'
jid="harritudur@shakespeare.lit/pda’
role='none'/>
</game>
</presence>

<presence
from='england@games.shakespeare.lit/earl1’
to="'wcatesby@shakespeare.lit/laptop'
type='unavailable'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation="member'
jid='harritudur@shakespeare.lit/pda’
role="none'/>
</game>
</presence>

Presence stanzas of type "unavailable" reflected by the room MUST contain extended presence information
about roles and affiliations; in particular, the 'role' attribute MUST be set to a value of "none" to denote that

the individual is no longer an occupant.

The occupant MAY include normal <status/> information in the unavailable presence stanzas; this enables

the occupant to provide a custom exit message if desired:

Example 108. Custom Exit Message

<presence
from="wcatesby@shakespeare.lit/laptop"’
to='england@games.shakespeare.lit/henryvii’
type='unavailable'>

<status>Now civil wounds are stopped, peace lives again.</status>

</presence>

111

Normal presence stanza generation rules apply as defined in XMPP IV, so that if the user sends a general
unavailable presence stanza, the wuser’s server will broadcast that stanza to the client’s
<room@service/nick>; as a result, there is no need for the leaving client to send directed unavailable
presence to its occupant JID. It is possible that a user might not be able to gracefully exit the room by
sending unavailable presence. If the user goes offline without sending unavailable presence, the user’s
server is responsible for sending unavailable presence on behalf of the user (in accordance with RFC 6121).

Note: See Ghost Users for suggestions regarding room occupants that appear to be present
in the room but that are actually offline.

Note: If the room is not persistent and this occupant is the last to exit, the service is
responsible for destroying the room.

8. Moderator Use Cases

A moderator has privileges to perform certain actions within the room (e.g., to change the roles of some
occupants) but does not have rights to change persistent information about affiliations (which can be
changed only by an admin or owner) or the room configuration. Exactly which actions can be performed by
a moderator is subject to configuration. However, for the purposes of the MMOG framework, moderators
are stipulated to have privileges to perform the following actions:

1. discover an occupant’s full JID in a semi-anonymous room (occurs automatically through presence)

2. modify the subject

3. kick a participant or visitor from the room

4. grant or revoke voice in a moderated room

5. modify the list of occupants who have voice in a moderated room
These features are implemented with a request/response exchange using <iq/> elements that contain child
elements qualified by the 'http://jabber.org/protocol/mmog#admin’ namespace. The examples below
illustrate the protocol interactions to implement the desired functionality. (Except where explicitly noted
below, any of the following administrative requests MUST be denied if the <user@host> of the 'from'

address of the request does not match the bare JID portion of one of the moderators; in this case, the service
MUST return a <forbidden/> error.)

8.1. Modifying the Room Subject
A common feature of multi-user game rooms is the ability to change the subject within the room.

By default, only users with a role of "moderator" SHOULD be allowed to change the subject in a room
(although this is configurable, with the result that a mere participant or even visitor might be allowed to
change the subject, as controlled by the "mmog#roomconfig_changesubject” option).

The subject is changed by sending a message of type "groupchat" to the <room@service>, where the
<message/> MUST contain a <subject/> element that specifies the new subject but MUST NOT contain a

112

<body/> element (or a <thread/> element). In accordance with the core definition of XMPP, other child
elements are allowed (although the entity that receives them might ignore them).

Note: A message with a <subject/> and a <body/> or a <subject/> and a <thread/> is a
legitimate message, but it SHALL NOT be interpreted as a subject change.

Example 109. Moderator Changes Subject

<message
from="wcatesby@shakespeare.lit/laptop"’
id="'1lh2bs617'
to='england@games.shakespeare.lit'
type='groupchat'>
<subject>Made glorious summer by this Sun of York!</subject>
</message>

The MMOG service MUST reflect the message to all other occupants with a 'from' address equal to the room
JID or to the occupant JID that corresponds to the sender of the subject change:

Example 110. Service Informs All Occupants of Subject Change

<message
from='england@games.shakespeare.lit/sirwilliam'
id="5BCE07C5-0729-4353-A6A3-ED9818C9B498"'
to='richardiii@shakespeare.lit/desktop"’
type='groupchat'>
<subject>Made glorious summer by this Sun of York!</subject>
</message>

[coa]

As explained under , when a new occupant joins the room the room SHOULD include the last subject change
after the discussion history.

An MMOG client that receives such a message MAY choose to display an in-room message, such as the
following:

Example 111. Client Displays Room Subject Change Message

* sirwilliam has changed the subject to: Made glorious summer by this Sun of York!

If someone without appropriate privileges attempts to change the room subject, the service MUST return a
message of type "error” specifying a <forbidden/> error condition:

113

Example 112. Service Returns Error Related to Unauthorized Subject Change

<message
from='england@games.shakespeare.lit/earl1’
id="'1lh2bs617"'
to="harritudur@shakespeare.lit/pda'’
type='error'>
<subject>Thou offspring of the house of Lancaster!</subject>
<error by='england@games.shakespeare.lit' type='auth'>
<forbidden xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</message>

In order to remove the existing subject but not provide a new subject (i.e., set the subject to be empty), the
client shall send an empty <subject/> element (i.e., either "<subject/>" or "<subject></subject>").

Example 113. Moderator Sets Empty Subject

<message
from="wcatesby@shakespeare.lit/laptop"’
id='uj3bs6lg’
to='england@games.shakespeare.lit'
type='groupchat'>
<subject></subject>
</message>

8.2. Kicking an Occupant

A moderator has permissions to kick certain kinds of occupants from a room (which occupants are
"kickable" depends on service provisioning, room configuration, and the moderator’s affiliation — see
below). The kick is performed based on the occupant’s room nickname and is completed by setting the role

of a participant or visitor to a value of "none".

Example 114. Moderator Kicks Occupant

<iq from='richardiii@shakespeare.lit/desktop’

id="kick1"'
to="buckingham@games.shakespeare.lit"'
type="set'>

<query xmlns="http://jabber.org/protocol/mmog#admin'>
<item nick='buckingham' role='none'>
<reason>0ut on you, owls!</reason>
</item>
</query>
</iq>

The service MUST remove the kicked occupant by sending a presence stanza of type "unavailable" to each
kicked occupant, including status code 307 in the extended presence information, optionally along with the
reason (if provided) and the roomnick or bare JID of the user who initiated the kick.

114

Example 115. Service Removes Kicked Occupant

<presence
from='richardiii@shakespeare.lit/desktop’
to="buckingham@shakespeare.lit/notebook"
type='unavailable'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='none' role='none'>
<actor nick='Buckingham'/>
<reason>0ut on you, owls!</reason>
</item>
<status code='110"'/>
<status code='307"'/>
</game>
</presence>

The inclusion of the status code assists clients in presenting their own notification messages (e.g.,
information appropriate to the user’s locality). The optional inclusion of the reason and actor enable the
kicked user to understand why he or she was kicked, and by whom if the kicked occupant would like to
discuss the matter. (N.B.)

After removing the kicked occupant(s), the service MUST then inform the moderator of success:

Example 116. Service Informs Moderator of Success

<iq from='buckingham@games.shakespeare.lit"
id="kick1"'
to='richardiii@shakespeare.lit/desktop"’
type="'result'/>

After informing the moderator, the service MUST then inform all of the remaining occupants that the kicked
occupant is no longer in the room by sending presence stanzas of type "unavailable" from the individual’s
roomnick (<room@service/nick>) to all the remaining occupants (just as it does when occupants exit the
room of their own volition), including the status code and optionally the reason and actor.

Example 117. Service Informs Remaining Occupants

<presence
from="'richardiii@shakespeare.lit/desktop"’
to="wcatesby@shakespeare.lit/laptop"
type='unavailable'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='none' role='none'/>
<status code='307'/>
</game>
</presence>

A user cannot be kicked by a moderator with a lower affiliation. Therefore, if a moderator who is a member
attempts to kick an admin or a moderator who is a member or admin attempts to kick an owner, the service

115

MUST deny the request and return a <not-allowed/> error to the sender:

Example 118. Service Returns Error on Attempt to Kick User With Higher Affiliation

<iq from='england@games.shakespeare.lit'
id="kicktest'
to="'wcatesby@shakespeare.lit/laptop'
type="error'>
<error type='cancel'>
<not-allowed xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</ig>

If a moderator attempts to kick himself, the service MAY deny the request and return a <conflict/> error to
the sender. (Although the act of kicking oneself may seem odd, it is common in IRC as a way of apologizing
for one’s actions in the room.)

8.3. Granting Voice to a Visitor

In a moderated room, a moderator might want to manage who does and does not have "voice" in the room
(i.e., the ability to send messages to all occupants). Voice is granted based on the visitor’s room nickname,
which the service will convert into the visitor’s full JID internally. The moderator grants voice to a visitor by
changing the visitor’s role to "participant”.

Example 119. Moderator Grants Voice to a Visitor

<iq from='richardiii@shakespeare.lit/desktop’
id="'voicel'
to="'england@games.shakespeare.lit'
type="set'>
<query xmlns="http://jabber.org/protocol/mmog#admin'>
<item nick='messenger'
role="participant'/>
</query>
</ig>

The <reason/> element is OPTIONAL:

Example 120. Moderator Grants Voice to a Visitor (With a Reason)

<iq from='richardiii@shakespeare.lit/desktop'
id='voicel'
to='england@games.shakespeare.lit'
type="'set'>
<query xmlns='http://jabber.org/protocol/mmog#admin'>
<item nick='messenger'
role='participant'>
<reason>Well, go muster man.</reason>
</item>
</query>
</ig>

116

The service MUST then inform the moderator of success:

Example 121. Service Informs Moderator of Success

<iq from='england@games.shakespeare.lit'
id="voicel'
to='richardiii@shakespeare.lit/desktop"’
type="'result'/>

The service MUST then send updated presence from this individual’s <room@service/nick> to all occupants,
indicating the addition of voice privileges by including an <game/> element qualified by the
'http://jabber.org/protocol/mmog#user' namespace and containing an <item/> child with the 'role" attribute
set to a value of "participant".

Example 122. Service Sends Notice of Voice to All Occupants

<presence
from='england@games.shakespeare.lit/king’
to="'wcatesby@shakespeare.lit/laptop'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='member'
nick="'messenger'
role="participant'>
<reason>Well, go muster man.</reason>
</item>
</game>
</presence>

[ooo]

8.4. Revoking Voice from a Participant

In a moderated room, a moderator might want to revoke a participant’s privileges to speak. The moderator
can revoke voice from a participant by changing the participant’s role to "visitor":

Example 123. Moderator Revokes Voice from a Participant

<iq from='richardiii@shakespeare.lit/desktop’
id='voice2'
to='england@games.shakespeare.lit'
type="set'>
<query xmlns='http://jabber.org/protocol/mmog#admin'>
<item nick='messenger'
role="visitor'/>
</query>
</ig>

The <reason/> element is OPTIONAL:

117

Example 124. Moderator Revokes Voice from a Visitor (With a Reason)

<iq from='richardiii@shakespeare.lit/desktop'
id='voice2'
to='england@games.shakespeare.lit'
type="'set'>
<query xmlns='http://jabber.org/protocol/mmog#admin'>
<item nick='messenger'
role='visitor'>
<reason>Take that, until thou bring me better news.</reason>
</item>
</query>
</ig>

The service MUST then inform the moderator of success:

Example 125. Service Informs Moderator of Success

<iq from='england@games.shakespeare.lit'
id="voice2'
to='richardiii@shakespeare.lit/desktop"’
type='result'/>

The service MUST then send updated presence from this individual to all occupants, indicating the removal
of voice privileges by sending a presence element that contains an <game/> element qualified by the
'http://jabber.org/protocol/mmog#user' namespace and containing an <item/> child with the 'role" attribute
set to a value of "visitor".

Example 126. Service Notes Loss of Voice

<presence
from='england@games.shakespeare.lit/king’
to="'wcatesby@shakespeare.lit/laptop'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='member'
jid="harritudur@shakespeare.lit/pda’
role="'visitor'/>
</game>
</presence>

A moderator MUST NOT be able to revoke voice from a user whose affiliation is at or above the moderator’s
level. In addition, a service MUST NOT allow the voice privileges of an admin or owner to be removed by
anyone. If a moderator attempts to revoke voice privileges from such a user, the service MUST deny the
request and return a <not-allowed/> error to the sender along with the offending item(s):

118

Example 127. Service Returns Error on Attempt to Revoke Voice from an Admin, Owner, or User with
a Higher Affiliation

<iq from='england@games.shakespeare.lit'
id='voicetest'
to="'wcatesby@shakespeare.lit/laptop'
type='error'>
<error type='cancel'>
<not-allowed xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</ig>

8.5. Modifying the Voice List

A moderator in a moderated room might want to modify the voice list. To do so, the moderator first
requests the voice list by querying the room for all occupants with a role of 'participant’.

Example 128. Moderator Requests Voice List

<iq from='richardiii@shakespeare.lit/desktop"’
id='voice3'
to='england@games.shakespeare.lit'
type="get'>
<query xmlns='http://jabber.org/protocol/mmog#admin'>
<item role='participant'/>
</query>
</ig>

The service MUST then return the voice list to the moderator; each item MUST include the 'mick' and 'role’
attributes and SHOULD include the 'affiliation’ and 'jid" attributes:

119

Example 129. Service Sends Voice List to Moderator

<iq from='england@games.shakespeare.lit'

id='voice3'

to='richardiii@shakespeare.lit/desktop'

type='result'>

<query xmlns='http://jabber.org/protocol/mmog#admin'>

<item affiliation='member'
jid="wcatesby@shakespeare.lit/laptop'
nick='sirwilliam'
role='participant'/>

<item affiliation='none'
jid="harritudur@shakespeare.lit/pda’
nick='earl?'
role='participant'/>

<item affiliation='none'
jid="'thomasstanley@shakespeare.lit/cell’
nick="'earlofderby"
role="participant'/>

<item affiliation='none'
jid="elizabeth@shakespeare.lit/tablet"’
nick="'queenconsort'
role='none'/>

</query>
</iq>

The moderator can then modify the voice list if desired. In order to do so, the moderator MUST send the
changed items (i.e., only the "delta") back to the service; each item MUST include the nick' attribute and 'role’
attribute (normally set to a value of "participant” or "visitor") but SHOULD NOT include the 'jid' attribute
and MUST NOT include the 'affiliation’ attribute (which is used to manage affiliations such as owner rather
than the participant role):

Example 130. Moderator Sends Modified Voice List to Service

<iq from='richardiii@shakespeare.lit/desktop'
id='voice4'
to='england@games.shakespeare.lit'
type='set'>
<query xmlns='http://jabber.org/protocol/mmog#admin'>
<item nick='earl1'
role='outcast'/>
<item nick='earlofderby'
role='outcast'>
<reason>For, lords, tomorrow is a busy day.</reason>
</item>
<item nick='queenconsort'
role='participant'>
<reason>So, I am satisfied.</reason>
</item>
</query>
</ig>

120

The service MUST then inform the moderator of success:

Example 131. Service Informs Moderator of Success

<iq from='england@games.shakespeare.lit'
id="voicel'
to='richardiii@shakespeare.lit/desktop"’
type="'result'/>

The service MUST then send updated presence for any affected individuals to all occupants, indicating the
change in voice privileges by sending the appropriate extended presence stanzas as described in the
foregoing use cases.

As noted, voice privileges cannot be revoked from a room owner or room admin, nor from any user with a
higher affiliation than the moderator making the request. If a room admin attempts to revoke voice
privileges from such a user by modifying the voice list, the service MUST deny the request and return a <not-
allowed/> error to the sender:

Example 132. Service Returns Error on Attempt to Revoke Voice from an Admin, Owner, or User with
a Higher Affiliation

<iq from='england@games.shakespeare.lit'
id='voicetest'
to="wcatesby@shakespeare.lit/laptop'
type=‘'error'>
<error type='cancel'>
<not-allowed xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</iq>

8.6. Approving Voice Requests

As noted in the Requesting Voice section of this document, an occupant requests voice by sending a voice
request data form to the service. The service then SHOULD use that voice request data form as the basis for
a voice approval data form that it generates and sends to the room moderator(s). The voice approval data
form is contained in a <message/> stanza, as shown below.

121

Example 133. Voice Request Approval Form

<message from='england@games.shakespeare.lit'
id="approve'
to='richardiii@shakespeare.lit/desktop'>
<game xmlns='http://jabber.org/protocol/mmog"'>
<options>
<x xmlns='jabber:x:data' type='form'>
<title>Voice request</title>
<instructions>
To approve this request for voice, select
the "Grant voice to this person?"
checkbox and click OK. To skip this request,
click the cancel button.
</instructions>
<field var='FORM_TYPE' type='hidden'>
<value>http://jabber.org/protocol/mmog#request</value>
</field>
<field var="'mmog#role'
type='list-single'
label="'Requested role'>
<value>participant</value>
</field>
<field var="'mmog#jid'
type='jid-single’
label="'User ID'>
<value>harritudur@shakespeare.lit/pda</value>
</field>
<field var="'mmog#roomnick"
type="'text-single'
label="Room Nickname'>
<value>earli</value>
</field>
<field var='mmog#request_allow'
type='boolean’
label="'Grant voice to this person?'>
<value>false</value>
</field>
</xX>
</options>
</game>
</message>

In order to approve the request, a moderator shall submit the form:

122

Example 134. Voice Request Approval Submission

<message from='richardiii@shakespeare.lit/desktop’
id="approve'
to='england@games.shakespeare.lit'>
<game xmlns='http://jabber.org/protocol/mmog"'>
<options>
<x xmlns='jabber:x:data' type='submit'>
<field var='FORM_TYPE' type='hidden'>
<value>http://jabber.org/protocol/mmog#request</value>
</field>
<field var='mmog#role'>
<value>participant</value>
</field>
<field var="'mmog#jid'>
<value>harritudur@shakespeare.lit/pda</value>
</field>
<field var='mmog#roomnick'>
<value>earli</value>
</field>
<field var='mmog#request_allow'>
<value>true</value>
</field>
</x>
</options>
</game>
</message>

If a moderator approves the voice request, the service shall grant voice to the occupant and send a presence
update as described in the Granting Voice to a Visitor section of this document.

9. Admin Use Cases

A room administrator has privileges to modify persistent information about user affiliations (e.g., by
banning users) and to grant and revoke moderator status, but does not have rights to change the room
configuration, which is the sole province of the room owner(s). Exactly which actions can be performed by a
room admin is subject to configuration. However, for the purposes of the MMOG framework, room admins
are stipulated to at a minimum have privileges to perform the following actions:

1. ban a user from the room
2. modify the list of users who are banned from the room
3. grant or revoke membership
4. modify the member list
5. grant or revoke moderator status
6. modify the list of moderators
These features are implemented with a request/response exchange using <iq/> elements that contain child

elements qualified by the 'http://jabber.org/protocol/mmog#admin’ namespace. The examples below
illustrate the protocol interactions that implement the desired functionality. (Except where explicitly noted

123

below, any of the following administrative requests MUST be denied if the <user@host> of the 'from'
address of the request does not match the bare JID of one of the room admins; in this case, the service MUST

return a <forbidden/> error.)

9.1. Banning a User

An admin or owner can ban one or more users from a room. The ban MUST be performed based on the
occupant’s bare JID. In order to ban a user, an admin MUST change the user’s affiliation to "outcast".

Example 135. Admin Bans User

<iq from='richardiii@shakespeare.lit/desktop’

id='ban1'
to='england@games.shakespeare.lit'
type='set'>

<query xmlns='http://jabber.org/protocol/mmog#admin'>
<item affiliation='outcast'
jid="richardneville@shakespeare.lit'/>
</query>
</iq>

The <reason/> element is OPTIONAL.

Example 136. Admin Bans User (With a Reason)

<iq from='richardiii@shakespeare.lit/desktop’

id="'ban1'
to='england@games.shakespeare.lit'
type="set'>

<query xmlns="http://jabber.org/protocol/mmog#admin'>
<item affiliation='outcast'
jid="richardneville@shakespeare.lit'>
<reason>Treason</reason>
</item>
</query>
</ig>

The service MUST add that bare JID to the ban list, MUST remove the outcast’s nickname from the list of
registered nicknames, and MUST inform the admin or owner of success:

Example 137. Service Informs Admin or Owner of Success

<iq from='england@games.shakespeare.lit'
id="'ban1'
to='richardiii@shakespeare.lit/desktop"’
type='result'/>

The service MUST also remove any banned users who are in the room by sending a presence stanza of type
"unavailable" to each banned occupant, including status code 301 in the extended presence information,
optionally along with the reason (if provided) and the roomnick or bare JID of the user who initiated the

ban.

124

Example 138. Service Removes Banned User

<presence
from='england@games.shakespeare.lit"'
to='richardneville@shakespeare.lit/stabber’
type='unavailable'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='outcast' role='none'>
<actor nick='richardneville'/>
<reason>Treason</reason>
</item>
<status code='301"'/>
</game>
</presence>

The inclusion of the status code assists clients in presenting their own notification messages (e.g.,
information appropriate to the user’s locality). The optional inclusion of the reason and actor enable the
banned user to understand why he or she was banned, and by whom if the banned user would like to discuss
the matter.

The service MUST then inform all of the remaining occupants that the banned user is no longer in the room
by sending presence stanzas of type "unavailable" from the banned user to all remaining occupants (just as it
does when occupants exit the room of their own volition), including the status code and optionally the
reason and actor:

Example 139. Service Informs Remaining Occupants

<presence
type='unavailable'
from='england@games.shakespeare.lit"'
to="'wcatesby@shakespeare.lit/laptop'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='outcast'
jid="richardneville@shakespeare.lit/stabber
role="none'/>
<status code='301'/>
</game>
</presence>

As with Kicking an Occupant, a user cannot be banned by an admin with a lower affiliation. Therefore, if an
admin attempts to ban an owner, the service MUST deny the request and return a <not-allowed/> error to
the sender:

125

Example 140. Service Returns Error on Attempt to Ban User With Higher Affiliation

<iq from='england@games.shakespeare.lit'

id='ban1’
to="harritudur@shakespeare.lit/pda’
type="'set'>

<error type='cancel'>
<not-allowed xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</ig>

If an admin or owner attempts to ban himself, the service MUST deny the request and return a <conflict/>
error to the sender. (Note: This is different from the recommended service behavior on kicking oneself.)

9.2. Modifying the Ban List

A room admin might want to modify the ban list. (Note: The ban list is always based on a user’s bare JID.) To
modify the list of banned JIDs, the admin first requests the ban list by querying the room for all users with
an affiliation of 'outcast'.

Example 141. Admin Requests Ban List

<iq from='richardiii@shakespeare.lit/desktop’

id='ban2'
to='england@games.shakespeare.lit'
type='get'>

<query xmlns='http://jabber.org/protocol/mmog#admin'>
<item affiliation='outcast'/>
</query>
</iq>

The service MUST then return the list of banned users to the admin; each item MUST include the 'affiliation’
and 'jid" attributes but SHOULD NOT include the nick' and 'role' attributes:

Example 142. Service Sends Ban List to Admin

<iq from='england@games.shakespeare.lit'
id='ban2'
to='richardiii@shakespeare.lit/desktop'
type='result'>
<query xmlns='http://jabber.org/protocol/mmog#admin'>
<item affiliation='outcast'
jid="richardneville@shakespeare.lit'>
<reason>Treason</reason>
</item>
</query>
</iq>

The admin can then modify the ban list if desired. In order to do so, the admin MUST send the changed items
(i.e., only the "delta") back to the service; each item MUST include the 'affiliation’ attribute (normally set to a
value of "outcast" to ban or "none" to remove ban) and 'jid' attribute but SHOULD NOT include the 'nick'

126

attribute and MUST NOT include the 'role’ attribute (which is used to manage roles such as participant rather
than affiliations such as outcast); in addition, the reason and actor elements are OPTIONAL:

Example 143. Admin Sends Modified Ban List to Service

<iq from='richardiii@shakespeare.lit/desktop'

id='ban3’
to='england@games.shakespeare.lit'
type='set'>

<query xmlns='http://jabber.org/protocol/mmog#admin'>
<item affiliation='outcast'
jid="richardneville@shakespeare.lit'>
<reason>Treason</reason>
</item>
<item affiliation='outcast'
jid='georgeplantagenet@shakespeare.lit'>
<reason>Treason</reason>
</item>
</query>
</ig>

After updating the ban list, the service MUST inform the admin of success:

Example 144. Service Informs Admin of Success

<iq from='england@games.shakespeare.lit'
id="ban3'
to='richardiii@shakespeare.lit/desktop"’
type='result'/>

The service MUST then remove the affected occupants (if they are in the room) and send updated presence
(including the appropriate status code) from them to all the remaining occupants as described in the
Banning a User use case. (The service MUST also remove each banned user’s reserved nickname from the list
of reserved roomnicks, if appropriate.)

When an entity is banned from a room, an implementation SHOULD match JIDs in the following order (these
matching rules are the same as those defined for privacy lists in Privacy Lists (XEP-0016)):

1. <user@domain/resource> (only that resource matches)
2. <user@domain> (any resource matches)
3. <domain/resource> (only that resource matches)

4. <domain> (the domain itself matches, as does any user@domain or domain/resource)

Some administrators might wish to ban all users associated with a specific domain from all rooms hosted by
an MMOG service. Such functionality is a service-level feature and is therefore out of scope for this
document; see Service Administration (XEP-0133).

As specified in Banning a User, users cannot be banned under certain conditions. For example: admins and
owners cannot ban themselves, and a user cannot be banned by an admin with a lower affiliation. When a
request to modify the ban list includes one or more modifications that is prohibited by the definitions in

127

Banning a User, then the service SHOULD NOT apply any of the requested changes and MUST deny the
request using an error which SHOULD be either <conflict/> or <not-allowed/>.

9.3. Granting Membership

An admin can grant membership to a user; this is done by changing the affiliation for the user’s bare JID to
"member" (if a nick is provided, that nick becomes the user’s default nick in the room if that functionality is
supported by the implementation):

Example 145. Admin Grants Membership

<iq from='richardiii@shakespeare.lit/desktop’
id="member1’
to='england@games.shakespeare.lit'
type="'set'>
<query xmlns='http://jabber.org/protocol/mmog#admin'>
<item affiliation='member'
jid="wcatesby@shakespeare.lit/laptop"
nick="'sirwilliam'/>
</query>
</iq>

The <reason/> element is OPTIONAL.

Example 146. Admin Grants Membership (With a Reason)

<iq from='richardiii@shakespeare.lit/desktop’
id="member1"’
to="'england@games.shakespeare.lit'
type="set'>
<query xmlns="http://jabber.org/protocol/mmog#admin'>
<item affiliation="'member'
jid="wcatesby@shakespeare.lit/laptop"’
nick='sirwilliam'>
<reason>Good Catesby, go, effect this business soundly.</reason>
</item>
</query>
</iq>

The service MUST add the user to the member list and then inform the admin of success:

Example 147. Service Informs Admin of Success

<iq from='england@games.shakespeare.lit'
id="member1'
to='richardiii@shakespeare.lit/desktop"’
type='result'/>

If the user is in the room, the service MUST then send updated presence from this individual to all
occupants, indicating the granting of membership by including an <game/> element qualified by the
'http://jabber.org/protocol/mmog#user' namespace and containing an <item/> child with the 'affiliation’
attribute set to a value of "member".

128

Example 148. Service Sends Notice of Membership to All Occupants

<presence
from='england@games.shakespeare.lit/king'
to='richardiii@shakespeare.lit/desktop'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='member'
jid='wcatesby@shakespeare.lit/laptop'
role='participant’
nick='sirwilliam'/>
</game>
</presence>

9.4. Revoking Membership

An admin might want to revoke a user’s membership; this is done by changing the user’s affiliation to
"none":

Example 149. Admin Revokes Membership

<iq from='richardiii@shakespeare.lit/desktop’
id="member2'
to='england@games.shakespeare.lit'
type="set'>
<query xmlns="http://jabber.org/protocol/mmog#admin'>
<item affiliation='none'
jid='earli@shakespeare.lit'/>
</query>
</iq>

The <reason/> element is OPTIONAL.

Example 150. Admin Revokes Membership (With a Reason)

<iq from='richardiii@shakespeare.lit/desktop'
id="member2'
to='england@games.shakespeare.lit'
type="set'>
<query xmlns='http://jabber.org/protocol/mmog#admin'>
<item affiliation='none'
jid='earll@shakespeare.lit'>
<reason>Do then: but I'll not hear.</reason>
</item>
</query>
</ig>

The service MUST remove the user from the member list and then inform the moderator of success:

129

Example 151. Service Informs Moderator of Success

<iq from='england@games.shakespeare.lit'
id="member2'
to='richardiii@shakespeare.lit/desktop'
type='result'/>

The service MUST then send updated presence from this individual to all occupants, indicating the loss of
membership by sending a presence element that contains an <game/> element qualified by the

'http://jabber.org/protocol/mmog#user' namespace and containing an <item/> child with the 'affiliation
attribute set to a value of "none".

Example 152. Service Notes Loss of Membership

<presence
from='england@games.shakespeare.lit/earl1’
to='richardiii@shakespeare.lit/desktop'>

<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='none'
jid="harritudur@shakespeare.lit/pda’
role='participant'/>
</game>
</presence>

[coo]

If the room is members-only, the service MUST remove the user from the room, including a status code of

321 to indicate that the user was removed because of an affiliation change, and inform all remaining
occupants. The stanza MAY include an <actor/> element.

130

Example 153. Service Removes Non-Member

<presence
from='england@games.shakespeare.lit/earl1’
to='richardiii@shakespeare.lit/desktop'>
type='unavailable'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='none' role='none'>
<actor nick='louisleprudent'/>
</item>
<status code='321"'/>
</game>
</presence>

<presence
from="'england@games.shakespeare.lit/earl1"’
to='richardiii@shakespeare.lit/desktop'>
type='unavailable'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='none' role='none'/>
<status code='321"'/>
</game>
</presence>

[ooo]

As there is no point in time where a non-member user must be in a members-only room, the service SHOULD
NOT send both a de-affiliation presence (without a 'type" attribute) followed by room-removal presence (of
type "'unavailable'). Instead, it SHOULD only send the latter of the two.

9.5. Modifying the Member List

In the context of a members-only room, the member list is essentially a "whitelist" of people who are
allowed to enter the room. Anyone who is not a member is effectively banned from entering the room, even
if their affiliation is not "outcast".

In the context of an open room, the member list is simply a list of users (bare JID and reserved nick) who are
registered with the room. Such users can appear in a room roster, have their room nickname reserved, be
returned in search results or FAQ queries, and the like.

It is RECOMMENDED that only room admins have the privilege to modify the member list in members-only
rooms. To do so, the admin first requests the member list by querying the room for all users with an
affiliation of "member™:

131

Example 154. Admin Requests Member List

<iq from='richardiii@shakespeare.lit/desktop'
id="member3’
to='england@games.shakespeare.lit'
type='get'>
<query xmlns='http://jabber.org/protocol/mmog#admin'>
<item affiliation='member'/>
</query>
</ig>

Note: A service SHOULD also return the member list to any occupant in a members-only
room; ie., it SHOULD NOT generate a <forbidden/> error when a member in the room
requests the member list. This functionality can assist clients in showing all the existing
members even if some of them are not in the room, e.g. to help a member determine if
another user should be invited. A service SHOULD also allow any member to retrieve the
member list even if not yet an occupant.

The service MUST then return the full member list to the admin qualified by the
'http://jabber.org/protocol/mmog#admin’ namespace; each item MUST include the 'affiliation’ and 'jid'
attributes and MAY include the 'nick’ and 'role' attributes for each member that is currently an occupant.

Example 155. Service Sends Member List to Admin

<iq from='england@games.shakespeare.lit'
id="member3’
to='richardiii@shakespeare.lit/desktop"’
type='result'>
<query xmlns="http://jabber.org/protocol/mmog#admin'>
<item affiliation='member'
jid="wcatesby@shakespeare.lit'
nick='sirwilliam'
role="participant'/>
</query>
</ig>

The admin can then modify the member list if desired. In order to do so, the admin MUST send the changed
items (i.e., only the "delta") to the service; each item MUST include the 'affiliation’ attribute (normally set to a
value of "member" or "none") and 'jid' attribute but SHOULD NOT include the 'nick' attribute (unless
modifying the user’s reserved nickname) and MUST NOT include the 'role' attribute (which is used to
manage roles such as participant rather than affiliations such as member):

132

Example 156. Admin Sends Modified Member List to Service

<iq from='richardiii@shakespeare.lit/desktop'
id="member4'’
to='england@games.shakespeare.lit'
type="'set'>
<query xmlns='http://jabber.org/protocol/mmog#admin'>
<item affiliation='none'
jid='earlli@shakespeare.lit'/>
<item affiliation='member'
jid='wcatesby@shakespeare.lit'/>
</query>
</ig>

The service MUST modify the member list and then inform the moderator of success:

Example 157. Service Informs Moderator of Success

<iq from='england@games.shakespeare.lit'
id="member4'
to='richardiii@shakespeare.lit/desktop"’
type='result'/>

The service MUST change the affiliation of any affected user. If the user has been removed from the member
list, the service MUST change the user’s affiliation from "member" to "none". If the user has been added to
the member list, the service MUST change the user’s affiliation to "member".

If a removed member is currently in a members-only room, the service SHOULD kick the occupant by
changing the removed member’s role to "none" and send appropriate presence to the removed member as
previously described. The service MUST subsequently refuse entry to the user.

For all room types, the service MUST send updated presence from this individual to all occupants, indicating
the change in affiliation by including an <game/> element qualified by the
'http://jabber.org/protocol/mmog#user’ namespace and containing an <item/> child with the 'affiliation’
attribute set to a value of "none".

Example 158. Service Sends Notice of Loss of Membership to All Occupants

<presence
from='england@games.shakespeare.lit/earl1’
to='richardiii@shakespeare.lit/desktop'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='none'
jid="harritudur@shakespeare.lit/pda’
role="participant'/>
</game>
</presence>

[ooa]

133

In addition, the service SHOULD send an invitation to any user who has been added to the member list of a
members-only room if the user is not currently affiliated with the room (note that the following example
includes a password but not a reason — both child elements are OPTIONAL):

Example 159. Room Sends Invitation to New Member

<message
from='england@games.shakespeare.lit"'
id="'CA409450-5AAE-41C1-AAAD-5375CA738885"
to="'whastings@shakespeare.lit'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<invite from='richardiii@shakespeare.lit'/>
<password>dieuetmondroit</password>
</game>
</message>

Although only admins and owners SHOULD be allowed to modify the member list, an implementation MAY
provide a configuration option that opens invitation privileges to any member of a members-only room. In
such a situation, any invitation sent SHOULD automatically trigger the addition of the invitee to the member
list. However, if invitation privileges are restricted to admins and a mere member attempts to a send an
invitation, the service MUST deny the invitation request and return a <forbidden/> error to the sender:

Example 160. Service Returns Error on Attempt by Mere Member to Invite Others to a Members-Only
Room

<message
from="england@games.shakespeare.lit"'
id="C6E14DF6-00B7-4729-BC1C-94E59C07548E"
to="harritudur@shakespeare.lit/pda’
type="error'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<invite to='thomasstanley@shakespeare.lit'>
<reason>
And make poor England weep in streams of blood!
</reason>
</invite>
</game>
<error type='auth'>
<forbidden xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</message>

Invitations sent through an open room MUST NOT trigger the addition of the invitee to the member list.

If a user is added to the member list of an open room and the user is in the room, the service MUST send
updated presence from this individual to all occupants, indicating the change in affiliation by including an
<game/> element qualified by the 'http://jabber.org/protocol/mmog#user' namespace and containing an
<item/> child with the 'affiliation’ attribute set to a value of "member".

134

Example 161. Service Sends Notice of Membership to All Occupants

<presence
from='england@games.shakespeare.lit/hastings’
to='richardiii@shakespeare.lit/desktop'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='member'
jid='whastings@shakespeare.lit/smartphone'’
role='participant'/>
</game>
</presence>

9.6. Granting Moderator Status

An admin might want to grant moderator status to a participant or visitor; this is done by changing the

user’s role to "moderator":

Example 162. Admin Grants Moderator Status

<iq from='richardiii@shakespeare.lit/desktop’
id="mod1"’
to='england@games.shakespeare.lit'
type="set'>
<query xmlns="http://jabber.org/protocol/mmog#admin'>
<item nick='sirwilliam'
role="moderator'/>
</query>
</iq>

The <reason/> element is OPTIONAL.
Example 163. Admin Grants Moderator Status (With a Reason)

<iq from='richardiii@shakespeare.lit/desktop'
id="mod1"’
to='england@games.shakespeare.lit'
type='set'>
<query xmlns='http://jabber.org/protocol/mmog#admin'>
<item nick='sirwilliam'
role="moderator'>
<reason>Look to the drawbridge there!</reason>
</item>
</query>
</iq>

The service MUST add the user to the moderator list and then inform the admin of success:

135

Example 164. Service Informs Admin of Success

<iq from='england@games.shakespeare.lit'
id="mod1"’
to='richardiii@shakespeare.lit/desktop"’
type='result'/>

The service MUST then send updated presence from this individual to all occupants, indicating the addition
of moderator status by including an <game/> element qualified by the
'http://jabber.org/protocol/mmog#user' namespace and containing an <item/> child with the 'role' attribute
set to a value of "moderator".

Example 165. Service Sends Notice of Moderator Status to All Occupants

<presence
from="'england@games.shakespeare.lit/king'
to="harritudur@shakespeare.lit/pda'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='member'
jid='wcatesby@shakespeare.lit/laptop'
role="moderator'/>
</game>
</presence>

[coo]

9.7. Revoking Moderator Status

An admin might want to revoke a user’s moderator status. An admin MAY revoke moderator status only
from a user whose affiliation is "member" or "none" (i.e., not from an owner or admin). The status is revoked
by changing the user’s role to "participant":

Example 166. Admin Revokes Moderator Status

<iq from='richardiii@shakespeare.lit/desktop'’
id="mod2'
to="'england@games.shakespeare.lit"’
type="set'>
<query xmlns='http://jabber.org/protocol/mmog#admin’>
<item nick='buckingham'
role='participant'/>
</query>
</iq>

The <reason/> element is OPTIONAL.

136

Example 167. Admin Revokes Moderator Status (With a Reason)

<iq from='richardiii@shakespeare.lit/desktop'
id="mod2'
to='england@games.shakespeare.lit'
type="'set'>
<query xmlns='http://jabber.org/protocol/mmog#admin'>
<item nick='buckingham'
role='participant'>
<reason>Will not King Richard let me speak with him?</reason>
</item>
</query>
</ig>

The service MUST remove the user from the moderator list and then inform the admin of success:

Example 168. Service Informs Admin of Success

<iq from='england@games.shakespeare.lit'
id="mod2'
to='richardiii@shakespeare.lit/desktop"’
type='result'/>

The service MUST then send updated presence from this individual to all occupants, indicating the removal
of moderator status by sending a presence element that contains an <game/> element qualified by the
‘http://jabber.org/protocol/mmog#user' namespace and containing an <item/> child with the 'role' attribute
set to a value of "participant".

Example 169. Service Notes Loss of Moderator Status

<presence
from='england@games.shakespeare.lit/king’
to="harritudur@shakespeare.lit/pda’'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='member'
jid="buckingham@shakespeare.lit/notebook’
role="participant'/>
</game>
</presence>

As noted, an admin MUST NOT be allowed to revoke moderator status from a user whose affiliation is
"owner" or "admin". If an admin attempts to revoke moderator status from such a user, the service MUST
deny the request and return a <not-allowed/> error to the sender:

137

Example 170. Service Returns Error on Attempt to Revoke Moderator Status from an Admin or
Owner

<iq from='england@games.shakespeare.lit'
id="modtest"’
to='richardiii@shakespeare.lit/desktop"’
type='error'>
<error type='cancel'>
<not-allowed xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</ig>

9.8. Modifying the Moderator List

An admin might want to modify the moderator list. To do so, the admin first requests the moderator list by
querying the room for all users with a role of 'moderator'.

Example 171. Admin Requests Moderator List

<iq from='richardiii@shakespeare.lit/desktop'
id="'mod3’
to='england@games.shakespeare.lit'
type="get'>
<query xmlns="http://jabber.org/protocol/mmog#admin'>
<item role='moderator'/>
</query>
</iq>

The service MUST then return the moderator list to the admin; each item MUST include the 'nick' and 'role’
attributes, and MAY include the 'jid' and 'affiliation’ attributes:

Example 172. Service Sends Moderator List to Admin

<iq from='england@games.shakespeare.lit'
id="mod3"'
to='richardiii@shakespeare.lit/desktop"’
type='result'>
<query xmlns='http://jabber.org/protocol/mmog#admin’>
<item affiliation='member'
jid='wcatesby@shakespeare.lit/laptop'
nick='sirwilliam'
role="moderator'/>
</query>
</ig>

The admin can then modify the moderator list if desired. In order to do so, the admin MUST send the
changed items (i.e., only the "delta") back to the service; each item MUST include the 'nick’ attribute and 'role’'
attribute (set to a value of "moderator" to grant moderator status or "participant” to revoke moderator
status), but SHOULD NOT include the 'jid" attribute and MUST NOT include the 'affiliation’ attribute (which is
used to manage affiliations such as admin rather than the moderator role):

138

Example 173. Admin Sends Modified Moderator List to Service

<iq from='richardiii@shakespeare.lit/desktop'
id="mod4'’
to='england@games.shakespeare.lit'
type="'set'>
<query xmlns='http://jabber.org/protocol/mmog#admin'>
<item nick='sirwilliam'
role="moderator'/>
<item nick='hastings'
role="moderator'/>
</query>
</ig>

The service MUST modify the moderator list and then inform the admin of success:

Example 174. Service Informs Admin of Success

<iq from='england@games.shakespeare.lit'
id="mod4'
to='richardiii@shakespeare.lit/desktop"’
type='result'/>

The service MUST then send updated presence for any affected individuals to all occupants, indicating the
change in moderator status by sending the appropriate extended presence stanzas as described in the
foregoing use cases.

As noted, moderator status cannot be revoked from a room owner or room admin. If a room admin
attempts to revoke moderator status from such a user by modifying the moderator list, the service MUST
deny the request and return a <not-allowed/> error to the sender:

Example 175. Service Returns Error on Attempt to Revoke Moderator Status from an Admin or
Owner

<iq from='england@games.shakespeare.lit'
id="modtest'
to="harritudur@shakespeare.lit/pda’
type='error'>
<error type='cancel'>
<not-allowed xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</ig>

9.9. Approving Registration Requests

If a service does not automatically accept requests to register with a room, it MAY provide a way for room
admins to approve or deny registration requests over XMPP (alternatively, it could provide a web interface
or some other admin tool). The simplest way to do so is for the service to send a <message/> stanza to the
room admin(s) when the registration request is received, where the <message/> stanza contains a Data Form
asking for approval or denial of the request. The following Data Form is RECOMMENDED but

139

implementations might use a different form entirely, or supplement the following form with additional
fields.

140

Example 176. Registration Request Approval Form

<message from='england@games.shakespeare.lit'
1d="407665A9-E54E-4AD5-905F-9FD8864489B3"'
to="wcatesby@shakespeare.lit/laptop'>
<game xmlns='http://jabber.org/protocol/mmog"'>
<options>
<x xmlns='jabber:x:data' type='form'>
<title>Registration request</title>
<instructions>
To approve this registration request, select the
"Allow this person to register with the room?"
checkbox and click OK. To skip this request, click the
cancel button.
</instructions>
<field var='FORM_TYPE' type='hidden'>
<value>http://jabber.org/protocol/mmog#register</value>
</field>
<field var='mmog#register_first'
type="'text-single'
label="'Given Name'>
<value>William</value>
</field>
<field var='mmog#register_last'
type="text-single"
label="Family Name">
<value>Catesby</value>
</field>
<field var='mmog#register_roomnick"'
type="text-single"
label="Desired Nickname">
<value>sirwilliam</value>
</field>
<field var="'mmog#register_url'
type="text-single"
label="User URL">
<value>http://thewarsoftheroses.net/william-catesby/</value>
</field>
<field var='mmog#register_email"’
type="text-single"
label="Email Address">
<value>william.catesby@thewarsoftheroses.net</value>
</field>
<field var='mmog#register_fagentry'
type="text-multi"
label="FAQ Entry">
<value>March on, march on, since we are up in arms.</value>
</field>
<field var="mmog#register_allow’
type='boolean’
label="Allow this person to register with the room?'>
<value>0</value>
</field>
</x>
</options>
</game>
</message>

141

If the admin approves the registration request, the service shall register the user with the room.

More advanced registration approval mechanisms (e.g., retrieving a list of registration requests using Ad-
Hoc Commands (XEP-0050) as is done in Publish-Subscribe (XEP-0060)) are out of scope for this document.

10. Owner Use Cases

Every room MUST have at least one owner, and that owner (or a successor) is a long-lived attribute of the
room for as long as the room exists (e.g., the owner does not lose ownership on exiting a persistent room).
This document assumes that the (initial) room owner is the individual who creates the room and that only a
room owner has the right to change defining room configuration settings such as the room type. Room
owners can specify not only the room types (password-protected, members-only, etc.) but also certain
attributes of the room as listed in the Requirements section of this document. In addition, an owner can also
specify the JIDs of other owners, if supported by the implementation.

In order to provide the necessary flexibility for a wide range of configuration options, Data Forms (Data
Forms (XEP-0004)) are wused for room configuration, triggered by use of the
'http://jabber.org/protocol/mmog' namespace. If an entity does not include the MMOG namespace in its
room join/create request, then the service shall create the room and not wait for configuration via Data
Forms before creating the room (this ensures backwards-compatibility with the old groupchat 1.0 protocol);
however, if the room join/create request includes the MMOG extension, then the service shall require
configuration via Data Forms before creating and unlocking the room.

Note: The configuration options shown below address all of the features and room types
listed in the requirements section of this document; however, the exact configuration
options and form layout shall be determined by the implementation or specific deployment.
Also, these are examples only and are not intended to define the only allowed or required
configuration options for rooms. A given implementation or deployment MAY choose to
provide additional configuration options (clearance levels, profanity filters, supported
languages, message logging, etc.), which is why the use of the 'jabber:x:data' protocol is
valuable here.

10.1. Creating a Room

10.1.1. General Considerations

The privilege to create rooms MAY be restricted to certain users or MAY be reserved to an administrator of
the service. If access is restricted and a user attempts to create a room, the service MUST return a <not-
allowed/> error:

142

Example 177. Service Informs User of Inability to Create a Room

<presence

from='england@games.shakespeare.lit/earl1’
to="harritudur@shakespeare.lit/pda’
type='error'>
<game xmlns='http://jabber.org/protocol/mmog'’
var='http://jabber.org/protocol/mmog/dga'/>
<error by='england@games.shakespeare.lit' type='cancel'>
<not-allowed xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>

</presence>

If a game element or the 'var' attribute with the game namespace is missing then the service MUST deny
creating a room and send a presence with a bad request error back to the user.

If access is not restricted, the service MUST allow the user to create a room as described below.

From the perspective of room creation, there are in essence two kinds of rooms:

"Instant rooms" — these are available for immediate access and are automatically created based on some
default configuration.

"Reserved rooms" —these are manually configured by the room creator before anyone is allowed to
enter.

The workflow for creating and configuring such rooms is as follows:

1.

The user sends presence to <room@service/nick> and signal his or her support for the Multi-User
Gaming protocol by including extended presence information in an empty <game/> child element
qualified by the 'http://jabber.org/protocol/mmog' namespace (note the lack of an '#owner' or '#user'
fragment).

. If this user is allowed to create a room and the room does not yet exist, the service MUST create the

room according to some default configuration, assign the requesting user as the initial room owner, and
add the owner to the room but not allow anyone else to enter the room (effectively "locking" the room).
The initial presence stanza received by the owner from the room MUST include extended presence
information indicating the user’s status as an owner and acknowledging that the room has been created
(via status code 201) and is awaiting configuration.

. If the initial room owner would like to create and configure a reserved room, the room owner MUST

then request a configuration form by sending an IQ stanza of type "get" to the room containing an empty
<query/> element qualified by the 'http://jabber.org/protocol/mmog#owner' namespace, then complete
Steps 4 and 5. If the room owner would prefer to create an instant room, the room owner MUST send a
query element qualified by the 'http://jabber.org/protocol/mmog#owner' namespace and containing an
empty <x/> element of type "submit" qualified by the 'jabber:x:data’' namespace, then skip to Step 6.

. If the room owner requested a configuration form, the service MUST send an IQ result to the room

owner containing a configuration form qualified by the 'jabber:x:data’ namespace. If there are no
configuration options available, the room MUST return an empty query element to the room owner.

143

The initial room owner SHOULD provide a starting configuration for the room (or accept the default
configuration) by sending an IQ set containing the completed configuration form. Alternatively, the
room owner MAY cancel the configuration process. (An implementation MAY set a timeout for initial
configuration, such that if the room owner does not configure the room within the timeout period, the
room owner is assumed to have accepted the default configuration or to have cancelled the
configuration process.)

6. Once the service receives the completed configuration form from the initial room owner (or receives a
request for an instant room), the service MUST "unlock" the room (i.e., allow other users to enter the
room) and send an IQ of type "result" to the room owner. If the service receives a cancellation, it MUST
destroy the room.

The protocol for this workflow is shown in the examples below.

First, the user MUST send presence to the room, including an empty <game/> element qualified by the
'http://jabber.org/protocol/mmog' namespace (this is the same stanza sent when seeking to enter a room).

Example 178. User Creates a Room and Signals Support for Multi-User Gaming

<presence
from="'richardiii@shakespeare.lit/desktop"’
to="'england@games.shakespeare.lit/king'>
<game xmlns='http://jabber.org/protocol/mmog'
var="http://jabber.org/protocol/mmog/dga'/>
</presence>

If the room does not yet exist, the service SHOULD create the room (subject to local policies regarding room
creation), assign the bare JID of the requesting user as the owner, add the owner to the room, and
acknowledge successful creation of the room by sending a presence stanza of the following form:

Example 179. Service Acknowledges Room Creation

<presence
from='england@games.shakespeare.lit/king'
to='richardiii@shakespeare.lit/desktop'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='owner'
role="moderator'/>
<status code='110"'/>
<status code='201"'/>
</game>
</presence>

After receiving notification that the room has been created, the room owner needs to decide whether to
accept the default room configuration (i.e., create an "instant room") or configure the room to use something
other than the default room configuration (i.e., create a "reserved room"). The protocol flows for completing
those two use cases are shown in the following sections.

Note: If the presence stanza sent to a nonexistent room does not include an <game/>
element qualified by the 'http://jabber.org/protocol/mmog' namespace as shown above, the

144

service SHOULD create a default room without delay (i.e., it MUST assume that the client
supports groupchat 1.0 rather than MUC and therefore it MUST NOT lock the room while
waiting for the room creator to either accept an instant room or configure a reserved
room).

10.1.2. Creating an Instant Room

If the initial room owner wants to accept the default room configuration (i.e., create an "instant room"), the
room owner MUST decline an initial configuration form by sending an IQ set to the <room@service> itself
containing a <query/> element qualified by the 'http://jabber.org/protocol/mmog#owner' namespace, where
the only child of the <query/> is an empty <x/> element that is qualified by the 'jabber:x:data’ namespace and
that possesses a 'type' attribute whose value is "submit":

Example 180. Owner Requests Instant Room

<iq from='richardiii@shakespeare.lit/desktop'
id='create?’
to='england@games.shakespeare.lit'
type="set'>
<query xmlns='http://jabber.org/protocol/mmog#owner'>
<options>
<x xmlns='jabber:x:data' type='submit'/>
</options>
</query>
</ig>

The service MUST then unlock the room and allow other entities to join it.

10.1.3. Creating a Reserved Room

If the initial room owner wants to create and configure a reserved room, the room owner MUST request an
initial configuration form by sending an IQ get to the <room@service> itself containing an empty <query/>
element qualified by the 'http://jabber.org/protocol/mmog#owner' namespace:

Example 181. Owner Requests Configuration Form

<iq from='richardiii@shakespeare.lit/desktop’
id='createl’
to="'england@games.shakespeare.lit"'
type="get'>
<query xmlns="http://jabber.org/protocol/mmog#owner'>
<options/>
</query>
</ig>

If the room does not already exist, the service MUST return an initial room configuration form to the user.
(Note: The following example shows a representative sample of configuration options. A full list of x:data
fields registered for use in room creation and configuration is maintained by the XMPP Registrar; see the
XMPP Registrar Considerations section of this document.)

145

Example 182. Service Sends Configuration Form

<iq from='england@games.shakespeare.lit'
id='create?’
to='richardiii@shakespeare.lit/desktop"’
type='result'>
<query xmlns='http://jabber.org/protocol/mmog#owner'>
<options>
<x xmlns='jabber:x:data' type='form'>
<title>Configuration for "england" Room</title>
<instructions>
Your room england@games.shakespeare.lit has been created!
The default configuration is as follows:
- No logging
- No moderation
- Up to 20 occupants
- No password required
- No invitation required
- Room is not persistent
- Only admins may change the subject
- Presence broadcasted for all users
To accept the default configuration, click OK. To
select a different configuration, please complete
this form.
</instructions>
<field
type="hidden'
var="'FORM_TYPE'>
<value>http://jabber.org/protocol/mmog#roomconfig</value>
</field>
<field
label="Natural-Language Room Name'
type="'text-single’
var="mmog#roomconfig_roomname'/>
<field
label="'Short Description of Room'
type="'text-single’
var="mmog#roomconfig_roomdesc'/>
<field
label="Natural Language for Room Discussions'
type="'text-single’
var="mmog#roomconfig_lang'/>
<field
label="Enable Public Logging?'
type="boolean’
var="mmog#roomconfig_enablelogging'>
<value>0</value>
</field>
<field
label="Allow Occupants to Change Subject?'
type="boolean’
var="mmog#roomconfig_changesubject'>
<value>0</value>
</field>
<field
label="Allow Occupants to Invite Others?'
type='boolean'
var="mmog#roomconfig_allowinvites'>
<value>0</value>
</field>
<field

146

Note: The _whois configuration option specifies whether the room is non-anonymous (a
value of "anyone"), semi-anonymous (a value of "moderators"), or fully anonymous (a value
of "none", not shown here).

If there are no configuration options available, the service MUST return an empty query element to the
room Owner:

Example 183. Service Informs Owner that No Configuration is Possible

<iq from='england@games.shakespeare.lit'
id='createl"’
to='richardiii@shakespeare.lit/desktop"’
type="result'>
<query xmlns="http://jabber.org/protocol/mmog#owner'>
<options/>
</query>
</iq>

The room owner SHOULD then fill out the form and submit it to the service.

147

Example 184. Owner Submits Configuration Form

<iq from='richardiii@shakespeare.lit/desktop'
id='create2’
to='england@games.shakespeare.lit'
type="'set'>
<query xmlns='http://jabber.org/protocol/mmog#owner'>
<options>
<x xmlns='jabber:x:data' type='submit'>
<field var='FORM_TYPE'>
<value>http://jabber.org/protocol/mmog#roomconfig</value>
</field>
<field var='mmog#roomconfig_roomname'>
<value>england</value>
</field>
<field var='mmog#roomconfig_roomdesc'>
<value>The Kingdom of England</value>

</field>

<field var='mmog#roomconfig_enablelogging'>
<value>0</value>

</field>

<field var='mmog#roomconfig_changesubject'>
<value>1</value>

</field>

<field var='mmog#roomconfig_allowinvites'>
<value>0</value>

</field>

<field var='mmog#roomconfig_allowpm'>
<value>anyone</value>

</field>

<field var='mmog#roomconfig_maxusers'>
<value>10</value>

</field>

<field var="'mmog#roomconfig_publicroom'>
<value>0</value>

</field>

<field var='mmog#roomconfig_persistentroom'>
<value>0</value>

</field>

<field var='mmog#roomconfig_moderatedroom'>
<value>0</value>

</field>

<field var='mmog#roomconfig_membersonly'>
<value>0</value>

</field>

<field var='mmog#roomconfig_passwordprotectedroom'>
<value>1</value>

</field>

<field var='mmog#roomconfig_roomsecret'>
<value>dieuetmondroit</value>

</field>

<field var='mmog#roomconfig_whois'>
<value>moderators</value>

</field>

<field var='mmog#maxhistoryfetch'>
<value>50</value>

</field>

<field var='mmog#roomconfig_roomadmins'>
<value>richardiii@shakespeare.lit</value>
<value>wcatesby@shakespeare.lit</value>
</field>

148

In addition to the room configuration, the user MAY also supply a custom initial state for the match.

Example 185. Owner Submits Configuration Form Including a Constructed Match

<iq from='richardiii@shakespeare.lit/desktop'
id='create2'
to='england@games.shakespeare.lit'
type='result'>
<query xmlns='http://jabber.org/protocol/mmog#owner'>
<options>
<x xmlns="'jabber:x:data' type='submit'>
</x>
<options xmlns='http://jabber.org/protocol/mmog/dga’>
<x xmlns="'jabber:x:data' type='submit'>
</x>
</options>
</options>
<state xmlns='http://jabber.org/protocol/mmog/dga’>
<x xmlns='jabber:x:data' type='submit'>
</xX>
</state>
</query>
</iq>

Valid states are defined by the game protocol and may consist of the explicit current state in form of a data
form or the series of turns that led to the state.

If room creation is successful, the service MUST inform the new room owner of success:

Example 186. Service Informs New Room Owner of Success

<iq from='england@games.shakespeare.lit'
id='create2'
to='richardiii@shakespeare.lit/desktop"’
type="result'/>

If the room creation fails because the specified room configuration options violate one or more service
policies (e.g., because the password for a password-protected room is blank), the service MUST return a
<not-acceptable/> error.

149

Example 187. Service Informs Owner that Requested Configuration Options Are Unacceptable

<iq from='england@games.shakespeare.lit'
id='create2’
to='richardiii@shakespeare.lit/desktop"’
type='error'>
<error type='modify'>
<not-acceptable xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</ig>

Alternatively, the room owner MAY cancel the configuration process:

Example 188. Owner Cancels Initial Configuration

<iq from='richardiii@shakespeare.lit/desktop'
id='create2'
to="'england@games.shakespeare.lit’
type="set'>
<query xmlns='http://jabber.org/protocol/mmog#owner'>
<x xmlns='jabber:x:data' type='cancel'/>
</query>
</iq>

If the room owner cancels the initial configuration, the service MUST destroy the room, making sure to send
unavailable presence to the room owner (see the Destroying a Room use case for protocol details).

If the room owner becomes unavailable for any reason before submitting the form (e.g., a lost connection),
the service will receive a presence stanza of type "unavailable" from the owner to the owner’s
<room@service/nick>. The service MUST then destroy the room, sending a presence stanza of type
"unavailable" from the room to the owner including a <destroy/> element and reason (if provided) as
defined in the Destroying a Room section of this document.

10.2. Subsequent Room Configuration

At any time after specifying the initial configuration of the room, a room owner might want to change the
configuration. In order to initiate this process, a room owner requests a new configuration form from the
room by sending an IQ get to <room@service> containing an empty <query/> element qualified by the
'http://jabber.org/protocol/mmog#owner' namespace.

Example 189. Owner Requests Configuration Form

<iq from='richardiii@shakespeare.lit/desktop’

id='config1l"'
to="'england@games.shakespeare.lit"'
type="get'>
<query xmlns="'http://jabber.org/protocol/mmog#owner"'/>
</ig>

If the <user@host> of the 'from' address does not match the bare JID of a room owner, the service MUST
return a <forbidden/> error to the sender:

150

Example 190. Service Denies Configuration Access to Non-Owner

<iq from='england@games.shakespeare.lit'
id='configures'
to="harritudur@shakespeare.lit/pda’
type='error'>
<query xmlns='http://jabber.org/protocol/mmog#owner'/>
<error type='auth'>
<forbidden xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</ig>

Otherwise, the service MUST send a configuration form to the room owner with the current options set as
defaults:

151

Example 191. Service Sends Configuration Form to Owner

<iq from='england@games.shakespeare.lit'
id='config1l"'
to='richardiii@shakespeare.lit/desktop'
type='result'>
<query xmlns='http://jabber.org/protocol/mmog#owner'>
<options>
<x xmlns='jabber:x:data' type='form'>
<title>Configuration for "england" Room</title>
<instructions>
Complete this form to modify the
configuration of your room.
</instructions>
<field
type='hidden'
var="'FORM_TYPE'>
<value>http://jabber.org/protocol/mmog#roomconfig</value>
</field>
<field
label="Natural-Language Room Name'
type='text-single'
var="'mmog#roomconfig_roomname'>
<value>england</value>
</field>
<field
label="'Short Description of Room'
type="'text-single’
var="'mmog#roomconfig_roomdesc'>
<value>The Kingdom of England</value>
</field>
<field
label="Enable Public Logging?'
type='boolean’
var="mmog#roomconfig_enablelogging'>
<value>0</value>
</field>
<field
label="Allow Occupants to Change Subject?'
type="'boolean’
var="mmog#roomconfig_changesubject'>
<value>0</value>
</field>
<field
label="Allow Occupants to Invite Others?'
type="boolean’
var="mmog#roomconfig_allowinvites'>
<value>0</value>
</field>
<field
label="Who Can Send Private Messages?'
type='list-single’
var="mmog#roomconfig_allowpm'>
<value>anyone</value>
<option label='Anyone'>
<value>anyone</value>
</option>
<option label='Anyone with Voice'>
<value>participants</value>
</option>
<option label='Moderators Only'>

152

If there are no configuration options available, the service MUST return an empty query element to the
room owner as shown in the previous use case.

The room owner then submits the form with updated configuration information. (Example not shown.)
Alternatively, the room owner MAY cancel the configuration process:

Example 192. Owner Cancels Subsequent Configuration

<iq from='richardiii@shakespeare.lit/desktop"’

id="config2"
to='england@games.shakespeare.lit'
type="set'>

<query xmlns="http://jabber.org/protocol/mmog#owner'>
<x xmlns='jabber:x:data' type='cancel'/>
</query>
</iq>

If the room owner cancels the subsequent configuration, the service MUST leave the configuration of the
room as it was before the room owner initiated the subsequent configuration process.

If as a result of a change in the room configuration a room admin loses admin status while in the room, the
room MUST send updated presence for that individual to all occupants, denoting the change in status by
including an <game/> element qualified by the 'http://jabber.org/protocol/mmog#user’ namespace and
containing an <item/> child with the 'affiliation’ attribute set to a value of "member" or "none" and the 'role’
attribute set to a value of "participant” or "visitor" as appropriate for the affiliation level and the room type:

Example 193. Service Notes Loss of Admin Affiliation

<presence
from="'england@games.shakespeare.lit/sirwilliam'
to='richardiii@shakespeare.lit/desktop'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation="'member'
jid='wcatesby@shakespeare.lit/laptop'
role='participant'/>
</game>
</presence>

[coo]

If as a result of a change in the room configuration a user gains admin status while in the room, the room
MUST send updated presence for that individual to all occupants, denoting the change in status by including
a <game/> element qualified by the 'http://jabber.org/protocol/mmog#user' namespace and containing an
<item/> child with the 'affiliation’ attribute set to a value of "admin" and the 'role’ attribute set to a value of
"moderator":

153

Example 194. Service Notes Gain of Admin Affiliation to All Users

<presence
from='england@games.shakespeare.lit/sirwilliam'
to='richardiii@shakespeare.lit/desktop'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='admin'
jid='wcatesby@shakespeare.lit/laptop'
role="moderator'/>
</game>
</presence>

[coo]

If as a result of a change in the room configuration a room owner loses owner status while that owner is in
the room, the room MUST send updated presence for that individual to all occupants, denoting the change in
status by including an <game/> element qualified by the 'http://jabber.org/protocol/mmog#user' namespace
and containing an <item/> child with the 'affiliation’ attribute set to a value of "admin" and the 'role’ attribute
set to an appropriate value given the affiliation and room type ("moderator" is recommended).

Example 195. Service Notes Loss of Owner Affiliation

<presence
from="england@games.shakespeare.lit/sirwilliam’
to="'richardiii@shakespeare.lit/desktop'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='admin'
jid="wcatesby@shakespeare.lit/laptop"’
role="moderator'/>
</game>
</presence>

[coa]

A service MUST NOT allow an owner to revoke his or her own owner status if there are no other owners; if
an owner attempts to do this, the service MUST return a <conflict/> error to the owner. However, a service
SHOULD allow an owner to revoke his or her own owner status if there are other owners.

If as a result of a change in the room configuration a user gains owner status while in the room, the room
MUST send updated presence for that individual to all occupants, denoting the change in status by including
a <game/> element qualified by the 'http://jabber.org/protocol/mmog#user' namespace and containing an
<item/> child with the 'affiliation’ attribute set to a value of "owner" and the 'role' attribute set to an
appropriate value given the affiliation and room type ("moderator" is recommended).

154

Example 196. Service Notes Gain of Owner Affiliation to All Users

<presence
from='england@games.shakespeare.lit/sirwilliam'
to='richardiii@shakespeare.lit/desktop'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='owner'
jid='wcatesby@shakespeare.lit/laptop'
role="moderator'/>
</game>
</presence>

[coo]

If as a result of a change in the room configuration the room type is changed to members-only but there are
non-members in the room, the service MUST remove any non-members from the room and include a status
code of 322 in the presence unavailable stanzas sent to those users as well as any remaining occupants.

10.2.1. Notification of Configuration Changes

A room MUST send notification to all occupants when the room configuration changes in a way that has an
impact on the privacy or security profile of the room. This notification shall consist of a <message/> stanza
containing a <game/> element qualified by the 'http://jabber.org/protocol/mmog#user' namespace, which
shall contain only a <status/> element with an appropriate value for the 'code’ attribute. Here is an example:

Example 197. Configuration Status Code

<message from='england@games.shakespeare.lit'
1d='80349046-F26A-44F3-A7A6-54825064DD9E"
to='richardiii@shakespeare.lit/desktop"’
type="'groupchat'>
<game xmlns='http://jabber.org/protocol/mmog#user'>

<configuration-changed/>

<status code='170'/>

<state xmlns='http://jabber.org/protocol/mmog/dga’>

</state>
</game>

</message>

The codes to be generated as a result of a privacy-related change in room configuration are as follows:

¢ Ifroomlogging is now enabled, status code 170.
e Ifroomlogging is now disabled, status code 171.
¢ If the room is now non-anonymous, status code 172.

¢ If the room is now semi-anonymous, status code 173.

For any other configuration change, the room SHOULD send status code 104 so that interested occupants can
retrieve the updated room configuration if desired.

155

10.3. Granting Owner Status

If allowed by an implementation, an owner MAY grant owner status to another user; this is done by changing
the user’s affiliation to "owner":

Example 198. Owner Grants Owner Status

<iq from='richardiii@shakespeare.lit/desktop'’
id="owner1'
to="'england@games.shakespeare.lit"’
type="set'>
<query xmlns='http://jabber.org/protocol/mmog#admin’>
<item affiliation='owner'
jid="wcatesby@shakespeare.lit'/>
</query>
</ig>

The <reason/> element is OPTIONAL.

Example 199. Owner Grants Owner Status (With a Reason)

<iq from='richardiii@shakespeare.lit/desktop"’
id="owner1'
to='england@games.shakespeare.lit'
type="set'>
<query xmlns="http://jabber.org/protocol/mmog#admin'>
<item affiliation='owner'
jid='wcatesby@shakespeare.lit'>
<reason>Look to the drawbridge there!</reason>
</item>
</query>
</iq>

As affiliations are granted, revoked, and maintained based on the user’s bare JID, the requesting entity
SHOULD use the bare JID of the user in the request. When processing a request that identifies a user by its
full JID, a service SHOULD use the bare JID representation.

If the <user@host> of the 'from' address does not match the bare JID of a room owner, the service MUST
return a <forbidden/> error to the sender.

Otherwise, the service MUST add the user to the owner list and then inform the owner of success:

Example 200. Service Informs Owner of Success

<iq from='england@games.shakespeare.lit'
id="'owner1'
to='richardiii@shakespeare.lit/desktop"’
type="'result'/>

If the user is in the room, the service MUST then send updated presence from this individual to all
occupants, indicating the granting of owner status by including an <game/> element qualified by the

156

'http://jabber.org/protocol/mmog#user' namespace and containing an <item/> child with the 'affiliation’
attribute set to a value of "owner" and the 'role' attribute set to an appropriate value given the affiliation

and room type ("moderator" is recommended).

Example 201. Service Sends Notice of Owner Status to All Occupants

<presence
from='england@games.shakespeare.lit/sirwilliam’
to='richardiii@shakespeare.lit/desktop'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='owner'
jid="wcatesby@shakespeare.lit'
role="moderator'/>
</game>
</presence>

[ooo]

If the user is not in the room, the service MAY send a message from the room itself to the room occupants,
indicating the granting of owner status by including a <game/> element qualified by the
'http://jabber.org/protocol/mmog#user’ namespace and containing an <item/> child with the 'affiliation’
attribute set to a value of "owner".

Example 202. Service Sends Notice of Owner Status to All Occupants

<message
from="england@games.shakespeare.lit"'
id='22B0F570-526A-4F22-BDE3-52EC3BB18371"
to='richardiii@shakespeare.lit/desktop'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='owner'
jid="wcatesby@shakespeare.lit'
role="moderator'/>
</game>
</message>

[coa]

10.4. Revoking Owner Status

An implementation MAY allow an owner to revoke another user’s owner status; this is done by changing the
user’s affiliation to something other than "owner":

157

Example 203. Owner Revokes Owner Status

<iq from='richardiii@shakespeare.lit/desktop'
id="'owner2'
to='england@games.shakespeare.lit'
type="'set'>
<query xmlns='http://jabber.org/protocol/mmog#admin'>
<item affiliation="'admin'
jid='wcatesby@shakespeare.lit'/>
</query>
</ig>

The <reason/> element is OPTIONAL.

Example 204. Owner Revokes Owner Status (With a Reason)

<iq from='richardiii@shakespeare.lit/desktop'’
id="owner2'
to="'england@games.shakespeare.lit"’
type="set'>
<query xmlns='http://jabber.org/protocol/mmog#admin’>
<item affiliation='admin'
jid="wcatesby@shakespeare.lit'>
<reason>A royal battle might be won and lost.</reason>
</item>
</query>
</iq>

A service MUST NOT allow an owner to revoke his or her own owner status if there are no other owners; if
an owner attempts to do this, the service MUST return a <conflict/> error to the owner. However, a service
SHOULD allow an owner to revoke his or her own owner status if there are other owners.

If an implementation does not allow one owner to revoke another user’s owner status, the implementation
MUST return a <not-authorized/> error to the owner who made the request.

Note: Allowing an owner to remove another user’s owner status can compromise the control
model for room management; therefore this feature is OPTIONAL, and implementations are
encouraged to support owner removal through an interface that is open only to individuals
with service-wide admin status.

In all other cases, the service MUST remove the user from the owner list and then inform the owner of
success:

Example 205. Service Informs Owner of Success

<iq from='england@games.shakespeare.lit'
id="'owner2'
to='richardiii@shakespeare.lit/desktop"’
type='result'/>

158

If the user is in the room, the service MUST then send updated presence from this individual to all
occupants, indicating the loss of owner status by sending a presence element that contains a <game/>
element qualified by the 'http://jabber.org/protocol/mmog#user' namespace and containing an <item/> child
with the 'affiliation’ attribute set to a value other than "owner" and the 'role" attribute set to an appropriate
value:

Example 206. Service Notes Loss of Owner Affiliation

<presence
from="england@games.shakespeare.lit/sirwilliam’
to="'richardiii@shakespeare.lit/desktop'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='admin'
jid="wcatesby@shakespeare.lit'
role="moderator'/>
</game>
</presence>

[coa]

10.5. Modifying the Owner List

If allowed by an implementation, a room owner might want to modify the owner list. To do so, the owner
first requests the owner list by querying the room for all users with an affiliation of 'owner".

Example 207. Owner Requests Owner List

<iq from='richardiii@shakespeare.lit/desktop'’
id="owner3'
to="'england@games.shakespeare.lit"’
type="get'>
<query xmlns='http://jabber.org/protocol/mmog#admin’>
<item affiliation='owner'/>
</query>
</iq>

If the <user@host> of the 'from' address does not match the bare JID of a room owner, the service MUST
return a <forbidden/> error to the sender.

Otherwise, the service MUST then return the owner list to the owner; each item MUST include the 'affiliation’
and 'jid' attributes and MAY include the 'nick' and 'role' attributes for any owner that is currently an
occupant:

159

Example 208. Service Sends Owner List to Owner

<iq from='england@games.shakespeare.lit'
id="'owner3'
to='richardiii@shakespeare.lit/desktop"’
type='result'>
<query xmlns='http://jabber.org/protocol/mmog#admin'>
<item affiliation='owner'
jid='richardiii@shakespeare.lit'/>
</query>
</iq>

The owner can then modify the owner list if desired. In order to do so, the owner MUST send the changed
items (i.e., only the "delta") back to the service; (N.B.) each item MUST include the 'affiliation’ and 'jid'
attributes but SHOULD NOT include the 'nick' attribute and MUST NOT include the 'role' attribute (which is
used to manage roles such as participant rather than affiliations such as owner). As affiliations are granted,
revoked, and maintained based on the user’s bare JID, the requesting entity SHOULD use the bare JID of
users in the request. When processing a request that identifies a user by its full JID, a service SHOULD use
the bare JID representation.

Example 209. Owner Sends Modified Owner List to Service

<iq from='richardiii@shakespeare.lit/desktop'
id="'owner4'’
to='england@games.shakespeare.lit'
type="set'>
<query xmlns='http://jabber.org/protocol/mmog#admin'>
<item affiliation='owner'
jid='richardiii@shakespeare.lit'/>
</query>
</ig>

Only owners shall be allowed to modify the owner list. If a non-owner attempts to view or modify the owner
list, the service MUST deny the request and return a <forbidden/> error to the sender:

Example 210. Service Returns Error on Attempt by Non-Owner to Modify Owner List

<iq from='england@games.shakespeare.lit'
id="ownertest'
to="harritudur@shakespeare.lit/pda’
type='error'>
<error type='auth'>
<forbidden xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</iq>

A service MUST NOT allow an owner to revoke his or her own owner status if there are no other owners; if
an owner attempts to do this, the service MUST return a <conflict/> error to the owner. However, a service
SHOULD allow an owner to revoke his or her own owner status if there are other owners.

In all other cases, the service MUST modify owner list and then inform the owner of success:

160

Example 211. Service Informs Owner of Success

<iq from='england@games.shakespeare.lit'
id="'owner4'
to='richardiii@shakespeare.lit/desktop"’
type='result'/>

The service MUST also send presence notifications related to any affiliation changes that result from
modifying the owner list as previously described.

10.6. Granting Admin Status

An owner can grant admin status to a member or an unaffiliated user; this is done by changing the user’s
affiliation to "admin":

Example 212. Owner Grants Admin Privileges

<iq from='richardiii@shakespeare.lit/desktop’
id='admin1'
to='england@games.shakespeare.lit'
type="set'>
<query xmlns="http://jabber.org/protocol/mmog#admin'>
<item affiliation='admin'
jid="wcatesby@shakespeare.lit'/>
</query>
</ig>

The <reason/> element is OPTIONAL.

Example 213. Owner Grants Admin Privileges (With a Reason)

<iq from='richardiii@shakespeare.lit/desktop'
id="admin1'
to='england@games.shakespeare.lit"'
type="set'>
<query xmlns='http://jabber.org/protocol/mmog#admin'>
<item affiliation='admin'
jid='wcatesby@shakespeare.lit'>
<reason>Look to the drawbridge there!</reason>
</item>
</query>
</iq>

As affiliations are granted, revoked, and maintained based on the user’s bare JID, the requesting entity
SHOULD use the bare JID of the user in the request. When processing a request that identifies a user by its
full JID, a service SHOULD use the bare JID representation.

If the <user@host> of the 'from' address does not match the bare JID of a room owner, the service MUST
return a <forbidden/> error to the sender.

Otherwise, the service MUST add the user to the admin list and then inform the owner of success:

161

Example 214. Service Informs Owner of Success

<iq from='england@games.shakespeare.lit'
id='admin1'
to='richardiii@shakespeare.lit/desktop"’
type='result'/>

If the user is in the room, the service MUST then send updated presence from this individual to all
occupants, indicating the granting of admin status by including an <game/> element qualified by the
'http://jabber.org/protocol/mmog#user' namespace and containing an <item/> child with the 'affiliation
attribute set to a value of "admin" and the 'role' attribute set to an appropriate value given the affiliation
and room type (typically "moderator").

Example 215. Service Sends Notice of Admin Status to All Occupants

<presence
from="england@games.shakespeare.lit/sirwilliam’
to='richardiii@shakespeare.lit/desktop'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='admin'
jid="wcatesby@shakespeare.lit'
role="moderator'/>
</game>
</presence>

[coa]

If the user is not in the room, the service MAY send a message from the room itself to the room occupants,
indicating the granting of admin status by including an <game/> element qualified by the
'http://jabber.org/protocol/mmog#user' namespace and containing an <item/> child with the 'affiliation’
attribute set to a value of "admin".

Example 216. Service Sends Notice of Admin Status to All Occupants

<message
from="'games.shakespeare.lit'
id="C75B919A-30B3-4233-AE89-6E9834E26929"'
to='richardiii@shakespeare.lit/desktop'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='admin'
jid="wcatesby@shakespeare.lit'
role='none'/>
</game>
</message>

[coa]

10.7. Revoking Admin Status

An owner might want to revoke a user’s admin status; this is done by changing the user’s affiliation to
something other than "admin" or "owner" (typically to "member" in a members-only room or to "none" in

162

other types of room).

Example 217. Owner Revokes Admin Status

<iq from='richardiii@shakespeare.lit/desktop'’
id='admin2'
to='england@games.shakespeare.lit'
type="set'>
<query xmlns='http://jabber.org/protocol/mmog#admin’>
<item affiliation='none'
jid="buckingham@shakespeare.lit'/>
</query>
</iq>

The <reason/> element is OPTIONAL.

Example 218. Owner Revokes Admin Status (With a Reason)

<iq from='richardiii@shakespeare.lit/desktop’
id='admin2'
to="'england@games.shakespeare.lit'
type="set'>
<query xmlns="http://jabber.org/protocol/mmog#admin'>
<item affiliation='none'
jid="buckingham@shakespeare.lit'>
<reason>Will not King Richard let me speak with him?</reason>
</item>
</query>
</ig>

As affiliations are granted, revoked, and maintained based on the user’s bare JID, the requesting entity
SHOULD use the bare JID of the user in the request. When processing a request that identifies a user by its
full JID, a service SHOULD use the bare JID representation.

If the <user@host> of the 'from' address does not match the bare JID of a room owner, the service MUST
return a <forbidden/> error to the sender.

Otherwise, the service MUST remove the user from the admin list and then inform the owner of success:

Example 219. Service Informs Owner of Success

<iq from='england@games.shakespeare.lit'
id="admin2'
to='richardiii@shakespeare.lit/desktop"’
type="'result'/>

If the user is in the room, the service MUST then send updated presence from this individual to all
occupants, indicating the loss of admin status by sending a presence element that contains a <game/>
element qualified by the 'http://jabber.org/protocol/mmog#user' namespace and containing an <item/> child
with the 'affiliation’ attribute set to a value other than "admin” or "owner" and the 'role' attribute set to an
appropriate value given the affiliation level and the room type (typically "participant").

163

Example 220. Service Notes Loss of Admin Affiliation

<presence
from="'england@games.shakespeare.lit/buckingham'
to='richardiii@shakespeare.lit/desktop'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='none'
jid="buckingham@shakespeare.lit'
role='participant'/>
</game>
</presence>

If the user is not in the room, the service MAY send a message from the room itself to the room occupants,
indicating the loss of admin status by including a <game/> element qualified by the
'http://jabber.org/protocol/mmog#user' namespace and containing an <item/> child with the 'affiliation
attribute set to a value other than "admin".

Example 221. Service Notes Loss of Admin Affiliation

<message
from="'england@games.shakespeare.lit'
id='2CF9013B-E8A8-42A1-9633-85AD7CA12F40"
to='richardiii@shakespeare.lit/desktop'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='none'
jid="buckingham@shakespeare.lit"'
role="participant'/>
</game>
</message>

10.8. Modifying the Admin List

A room owner might want to modify the admin list. To do so, the owner first requests the admin list by
querying the room for all users with an affiliation of 'admin'.

Example 222. Owner Requests Admin List

<iq from='richardiii@shakespeare.lit/desktop'
id="admin3'
to='england@games.shakespeare.lit"'
type="get'>
<query xmlns='http://jabber.org/protocol/mmog#admin'>
<item affiliation='admin'/>
</query>
</iq>

If the <user@host> of the 'from' address does not match the bare JID of a room owner, the service MUST

return a <forbidden/> error to the sender.

164

Otherwise, the service MUST then return the admin list to the owner; each item MUST include the 'affiliation’
and 'jid' attributes and MAY include the 'nick' and 'role' attributes for any admin that is currently an
occupant:

Example 223. Service Sends Admin List to Owner

<iq from='england@games.shakespeare.lit'
id='admin3’
to='richardiii@shakespeare.lit/desktop"’
type="'result'>
<query xmlns="http://jabber.org/protocol/mmog#admin'>
<item affiliation='admin'
jid="wcatesby@shakespeare.lit'
nick='sirwilliam'/>
<item affiliation='admin'
jid='whastings@shakespeare.lit'/>
nick="hastings'/>
<item affiliation='admin'
jid="buckingham@shakespeare.lit'/>
nick="buckingham'/>
</query>
</ig>

The owner can then modify the admin list if desired. In order to do so, the owner MUST send the changed
items (i.e., only the "delta") back to the service; (N.B.) each item MUST include the 'affiliation’ attribute
(normally set to a value of "admin" or "none") and 'jid' attribute but SHOULD NOT include the 'nick' attribute
and MUST NOT include the 'role' attribute (which is used to manage roles such as participant rather than
affiliations such as owner). As affiliations are granted, revoked, and maintained based on the user’s bare JID,
the requesting entity SHOULD use the bare JID of users in the request. When processing a request that
identifies a user by its full JID, a service SHOULD use the bare JID representation.

Example 224. Owner Sends Modified Admin List to Service

<iq from='richardiii@shakespeare.lit/desktop’
id="'admin4'
to="'england@games.shakespeare.lit"'
type="set'>
<query xmlns="http://jabber.org/protocol/mmog#admin'>
<item affiliation='none'
jid="buckingham@shakespeare.lit'>
</item>
<item affiliation='none'
jid='whastings@shakespeare.lit'>
</item>
</query>
</ig>

Only owners shall be allowed to modify the admin list. If a non-owner attempts to view or modify the admin
list, the service MUST deny the request and return a <forbidden/> error to the sender.

165

Example 225. Service Returns Error on Attempt by Non-Owner to Modify Admin List

<iq from='england@games.shakespeare.lit'
id='admintest'
to="harritudur@shakespeare.lit/pda'’
type='error'>
<error type='auth'>
<forbidden xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</iq>

Otherwise, the service MUST modify the admin list and then inform the owner of success:

Example 226. Service Informs Owner of Success

<iq from='england@games.shakespeare.lit'
id='admin4'
to='richardiii@shakespeare.lit/desktop'
type='result'/>

The service MUST also send presence notifications related to any affiliation changes that result from
modifying the admin list as previously described.

10.9. Room Saving

The owner may save the room whenever the match status is 'inactive' and save the room including the
match state in a moderated room.

Example 227. Owner Saves the Room

<iq from='richardiii@shakespeare.lit/desktop’
id='save'
to='england@games.shakespeare.lit'>
type="result'>
<save xmlns='http://jabber.org/protocol/mmog#owner"'/>
</iq>

If saving is allowed, the service MUST inform all occupants and remove them from the room.

166

Example 228. Service Broadcasts Presence to all Occupants

<presence
from='england@games.shakespeare.lit/king’
to='richardiii@shakespeare.lit/desktop"’
type='unavaiable'>
<saved xmlns='http://jabber.org/protocol/mmog'/>
</presence>

<presence
from='england@games.shakespeare.lit/sirwilliam'
to="wcatesby@shakespeare.lit/laptop'
type='unavaiable'>
<saved xmlns='http://jabber.org/protocol/mmog'/>
</presence>

Example 229. Service Informs Owner of Successful Save Request

<iq from='england@games.shakespeare.lit'
id='save'
to='richardiii@shakespeare.lit/desktop'
type='result'/>

After saving the room, nobody can join it until it is loaded by the owner.

10.10. Room Loading

For Discovering of Saved Rooms see the Search for Rooms secion. Send an 'iq' stanza to request loading a
room as follows:

Example 230. Owner Requests Loading an Adjourned Room

<iq from='richardiii@shakespeare.lit/desktop'
id="'load1’
to='england@games.shakespeare.lit'
type="get'>
<load xmlns='http://jabber.org/protocol/mmog#owner"'/>
</ig>

After loading, the match status is 'paused’ if the match was 'active' before saving. Alternatively, the match
status is set to 'inactive' if the match was inactive. The service SHOULD send an invitation to all occupants
that were present in the game when saved.

Players entering the room SHOULD be assigned the role they had when the room was saved.

10.11. Modifying the Member List

In the context of a members-only match, the member list is essentially a "whitelist" of people who are
allowed to enter the match. Anyone who is not a member is effectively banned from entering the match.

In the context of an open match, the member list is simply a list of users (bare JID and reserved nick) who
are registered with the match. Such users may appear in a match roster, have their match nickname
reserved, be returned in search results, and the like.

167

It is RECOMMENDED that only the room owner has the privilege to modify the member list in members-only
rooms. To do so, the owner first requests the member list by querying the room for all users with an
affiliation of "member":

Example 231. Owner Requests Member List

<iq from='richardiii@shakespeare.lit/desktop’
id="member3’
to="'england@games.shakespeare.lit'
type="get'>
<query xmlns="http://jabber.org/protocol/mmog#owner'>
<item affiliation='member'/>
</query>
</iq>

Note: A service SHOULD also return the member list to any occupant in a members-only
room; ie., it SHOULD NOT generate a <forbidden/> error when a member in the room
requests the member list. This functionality may assist clients in showing all the existing
members even if some of them are not in the room, e.g. to help a member determine if
another user should be invited. A service SHOULD also allow any member to retrieve the
member list even if not yet an occupant.

The service MUST then return the full member list to the owner qualified by the
'http://jabber.org/protocol/mmog#owner' namespace; each item MUST include the 'affiliation’ and 'jid'
attributes and MAY include the 'nick' and 'role" attributes for each members that is currently an occupant.

Example 232. Service Sends Member List to Owner

<iq from='england@games.shakespeare.lit'
id="member3’
to='richardiii@shakespeare.lit/desktop'
type='result'>
<query xmlns='http://jabber.org/protocol/mmog#owner'>
<item affiliation='member'
jid='wcatesby@shakespeare.lit'
nick='sirwilliam'/>
</query>
</ig>

The owner MAY then modify the member list. In order to do so, the owner MUST send the changed items
(i.e., only the "delta") to the service; each item MUST include the 'affiliation’ attribute (normally set to a value
of "member" or "none") and 'jid' attribute but SHOULD NOT include the 'nick' attribute and MUST NOT
include the 'role" attribute (which is used to manage game roles in a room):

168

Example 233. Owner Sends Modified Member List to Service

<iq from='richardiii@shakespeare.lit/desktop'
id="member4'
to='england@games.shakespeare.lit'
type="'set'>
<query xmlns='http://jabber.org/protocol/mmog#owner'>
<item affiliation='none'
jid='earli@shakespeare.lit'/>
<item affiliation='none'
jid="buckingham@shakespeare.lit'/>
</query>
</iq>

The service MUST modify the member list and then inform the owner of success:

Example 234. Service Informs Owner of Success

<iq from='england@games.shakespeare.lit'
id="member4'
to='richardiii@shakespeare.lit/desktop"’
type="'result'/>

The service MUST change the affiliation of any affected user. If the user has been removed from the member
list, the service MUST change the user’s affiliation from "member"” to "none". If the user has been added to
the member list, the service MUST change the user’s affiliation to "member".

If a removed member is currently in a members-only room, the service SHOULD kick the occupant by
changing the removed member’s affiliation to "none" and send appropriate presence to the removed
member as previously described. No matter whether the removed member was in or out of a members-only
room, the service MUST subsequently refuse entry to the user.

For all room types, the service MUST send updated presence from this individual to all occupants, indicating
the change in affiliation by including an <game/> element qualified by the 'http://jabber.org/protocol/mmog'
namespace and containing an <item/> child with the 'affiliation’ attribute set to a value of "none".

Example 235. Service Sends Notice of Loss of Membership to All Occupants

<presence
from='england@games.shakespeare.lit/king’
to='richardiii@shakespeare.lit/desktop'>
<game xmlns='http://jabber.org/protocol/mmog">
<item affiliation='none'/>
</game>
</presence>

In addition, the service SHOULD send an invitation to any user who has been added to the member list of a
members-only room if the user is not currently affiliated with the room, for example as an owner (such a

169

user would by definition not be in the match; note also that this example includes a password but not a
reason — both child elements are OPTIONAL):

Example 236. Room Sends Invitation to New Member

<message
from='england@games.shakespeare.lit"'
to="whastings@shakespeare.lit'>
<invited xmlns='http://jabber.org/protocol/mmog#user
from="richardiii@shakespeare.lit'
var="http://jabber.org/protocol/mmog/dga'>
<password>dieuetmondroit</password>
</invited>
</message>

While only the owner SHOULD be allowed to modify the member list, an implementation MAY provide a
configuration option that opens invitation privileges to any member of a members-only match. In such a
situation, any invitation sent SHOULD automatically trigger the addition of the invitee to the member list.
However, if invitation privileges are restricted to the owner and a mere member attempts to a send an
invitation, the service MUST deny the invitation request and return a <forbidden/> error to the sender:

Example 237. Service Returns Error on Attempt by Mere Member to Invite Others to a Members-Only
Match

<message
from="'england@games.shakespeare.lit'
to="harritudur@shakespeare.lit/pda’
type='error'>
<invite xmlns='http://jabber.org/protocol/mmog#user’
to="thomasstanley@shakespeare.lit'>
<reason>
Thou offspring of the House of Lancaster!
</reason>
</invite>
<error type='auth'>
<forbidden xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</message>

Invitations sent through an open room MUST NOT trigger the addition of the invitee to the member list.

If a user is added to the member list of an open room and the user is in the room, the service MUST send
updated presence from this individual to all occupants, indicating the change in affiliation by including an
<game/> element qualified by the 'http://jabber.org/protocol/mmog' namespace and containing an <item/>
child with the 'affiliation’ attribute set to a value of "member".

170

Example 238. Service Sends Notice of Membership to All Occupants

<presence
from='england@games.shakespeare.lit/sirwilliam'
to='richardiii@shakespeare.lit/desktop'>
<game xmlns='http://jabber.org/protocol/mmog"'>
<item affiliation='member'/>
</game>
</presence>

10.12. Revoke and Assign Teams

The room owner may decide to modify the assigned game teams in a room. To do so, the owner first
requests a list of the occupants and assigned teams by querying the room:

Example 239. Owner Requests List of All Occupants and Assigned Teams

<iq from='richardiii@shakespeare.lit/desktop’

id='roles1’
to="'england@games.shakespeare.lit'
type="get'>

<query xmlns="http://jabber.org/protocol/mmog#owner'>
<item team='all'/>
</query>
</iq>

Note: The team 'all' is a reserved name for querying the list of active players and MUST NOT
be redefined by games for other purposes.

The service SHOULD then return the full list of all occupants qualified by the
'http://jabber.org/protocol/mmog#owner' namespace; each item MUST include the 'team' and 'nick’
attributes and MAY include the 'jid' and 'affiliation’ attributes for each occupant in the room.

171

Example 240. Service Sends List of Occupants and Assigned Teams to Owner

<iq from='england@games.shakespeare.lit'
id='roles1’
to='richardiii@shakespeare.lit/desktop"’
type='result'>
<query xmlns='http://jabber.org/protocol/mmog#owner'>
<item team='york' nick='king'/>
<item team='york' nick='sirwilliam'/>
<item team='lancaster' nick='earll'/>
<item team='lancaster' nick='earlofderby'/>
<item team='none' nick='queenconsort'/>
<item team='none' nick='hastings'/>
<item team='none' nick='buckingham'/>
</query>
</ig>

The service MUST send a <forbidden/> error if the owner has not the required Privileges.

The owner MAY then modify the roles assigned by occupants. In order to do so, the owner MUST send the
changed items (i.e., only the "delta") to the service; each item MUST include the 'roles' attribute and nick'
attribute but SHOULD NOT include the 'jid" attribute and MUST NOT include the 'affiliation’ attribute:

Example 241. Owner Sends Modified List of Assigned Teams to Service

<iq from='richardiii@shakespeare.lit/desktop'
id='roles2’
to='england@games.shakespeare.lit'
type='set'>
<query xmlns='http://jabber.org/protocol/mmog#owner'>
<item team='york' nick='king'/>
<item team='york' nick='sirwilliam'/>
<item team='lancaster' nick='earl1'/>
<item team='lancaster' nick='earlofderby'/>
<item team='none' nick='queenconsort'/>
<item team='none' nick='hastings'/>
<item team='none' nick='buckingham'/>
</query>
</ig>

The service MUST modify the roles of the occupants and then inform the owner of success:

Example 242. Service Informs Owner of Success

<iq from='england@games.shakespeare.lit'
id="roles2'
to='richardiii@shakespeare.lit/desktop'’
type='result'/>

The service MUST change the roles of any affected user and MUST send updated presence to all occupants,
indicating the changed role by including a <game/> element qualified by the
'http://jabber.org/protocol/mmog’ namespace and containing an <item/> child with the 'role’ attribute.

172

Example 243. Service Sends Notice of Changed Roles to All Occupants

<presence
from="'england@games.shakespeare.lit/king'
to='richardiii@shakespeare.lit/desktop'>
<game xmlns='http://jabber.org/protocol/mmog"'>
<item role='york'/>
</game>
</presence>

10.13. Destroying a Room

A room owner MUST be able to destroy a room, especially if the room is persistent. The workflow is as
follows:

1. The room owner requests that the room be destroyed, optionally specifying a reason and an alternate
venue.

2. The room removes all users from the room (including appropriate information about the alternate
location and the reason for being removed) and destroys the room, even if it was defined as persistent.

Other than the foregoing, this document does not specify what (if anything) an MMOG service
implementation shall do as a result of a room destruction request. For example, if the room was defined as
persistent, an implementation MAY choose to lock the room ID so that it cannot be re-used, redirect enter
requests to the alternate venue, or invite the current participants to the new room; however, such
behaviour is OPTIONAL.

In order to destroy a room, the room owner MUST send an IQ set to the address of the room to be
destroyed. The <ig/> stanza shall contain a <query/> element qualified by the
'http://jabber.org/protocol/mmog#owner' namespace, which in turn shall contain a <destroy/> element. The
address of the alternate venue MAY be provided as the value of the <destroy/> element’s 'jid' attribute. A
password for the alternate venue MAY be provided as the XML character data of a <password/> child
element of the <destroy/> element. The reason for the room destruction MAY be provided as the XML
character data of a <reason/> child element of the <destroy/> element.

The following examples illustrate the protocol elements to be sent and received:

Example 244. Owner Submits Room Destruction Request

<iq from='richardiii@shakespeare.lit/desktop’
id="'begone'
to="wales@games.shakespeare.lit"'
type="set'>
<query xmlns="http://jabber.org/protocol/mmog#owner'>
<destroy jid='wales@games.shakespeare.lit'>
<reason>Yet to beat down these rebels here at home.</reason>
</destroy>
</query>
</ig>

173

The service is responsible for removing all the occupants. It SHOULD NOT broadcast presence stanzas of
type "unavailable" from all occupants, instead sending only one presence stanza of type "unavailable" to
each occupant so that the user knows he or she has been removed from the room. If extended presence
information specifying the JID of an alternate location and the reason for the room destruction was
provided by the room owner, the presence stanza MUST include that information.

Example 245. Service Removes Each Occupant

<presence
from="wales@shakespeare.lit/king'
to='richardiii@shakespeare.lit/desktop"’
type='unavailable'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='none' role='none'/>
<destroy jid='wales@games.shakespeare.lit'>
<reason>Yet to beat down these rebels here at home.</reason>
</destroy>
</game>
</presence>

<presence
from="'wales@shakespeare.lit/sirwilliam'
to="'wcatesby@shakespeare.lit/laptop'
type='unavailable'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='none' role='none'/>
<destroy jid='wales@games.shakespeare.lit'>
<reason>Yet to beat down these rebels here at home.</reason>
</destroy>
</game>
</presence>

<presence
from='wales@shakespeare.lit/earl1"’
to="harritudur@shakespeare.lit/pda’
type='unavailable'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='none' role='none'/>
<destroy jid='wales@games.shakespeare.lit'>
<reason>Yet to beat down these rebels here at home.</reason>
</destroy>
</game>
</presence>

Example 246. Service Informs Owner of Successful Destruction

<iq from='wales@games.shakespeare.lit'
id="begone'
to='richardiii@shakespeare.lit/desktop"’
type='result'/>

174

If the <user@host> of the 'from' address received on a destroy request does not match the bare JID of a
room owner, the service MUST return a <forbidden/> error to the sender:

Example 247. Service Denies Destroy Request Submitted by Non-Owner

<iq from='wales@games.shakespeare.lit'
id='destroytest'
to="'wcatesby@shakespeare.lit/laptop'
type='error'>
<query xmlns='http://jabber.org/protocol/mmog#owner'>
<destroy jid='wales@games.shakespeare.lit'>
<reason>Yet to beat down these rebels here at home.</reason>
</destroy>
</query>
<error type='auth'>
<forbidden xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
</error>
</iq>

11. Service Use Cases

11.1. Service Removes User Because of Error Response

An MMOG service MAY support adding the 333 status code to presences when a user gets removed by the
service due to a technical problem (e.g. s2s link failure).

If an MMOG service supports this OPTIONAL feature, it MUST include the 333 status code in the resulting
presence:

Example 248. MMOG Service Removes User Because of Error

<presence
from="'edwardv@games.shakespeare.lit/tower'
to="'tower@shakespeare.lit/edwardv’
type='unavailable'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='none' role='none' />
<status code='110"'/>
<status code='307"'/>
<status code='333"'/>
</game>
</presence>

The status code MUST also be included in presences sent to other occupants:

175

Example 249. MMOG Service Informs Other Occupants of Removal Because of an Error

<presence
from="'edwardv@games.shakespeare.lit/tower"
to='england@shakespeare.lit/king'
type='unavailable'>
<game xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='none' role='none'/>
<status code='307"'/>
<status code='333"'/>
</game>
</presence>

Note: Some server implementations additionally include a 307 status code (signifying a 'kick’,
i.e. a forced ejection from the room). This is generally not advisable, as these types of
disconnects may be frequent in the presence of poor network conditions and they are not
linked to any user (e.g. moderator) action that the 307 code usually indicates. It is therefore
recommended for the client to ignore the 307 code if a 333 status code is present.

11.2. Service Removes User Because of Service Shut Down

When a MMOG service shuts downs, it SHOULD inform its participant by sending presences containing the
332 status code.

Example 250. MMOG Service Removes User Because of Service Shutdown

<presence
from="'edwardv@games.shakespeare.lit/tower"
to='richardiii@shakespeare.lit/desktop"’
type='unavailable'>
<x xmlns='http://jabber.org/protocol/mmog#user'>
<item affiliation='none' role='none' />
<status code='110"'/>
<status code='332"'/>
</x>
</presence>
<presence
from="'edwardv@games.shakespeare.lit/tower"'
to='wcatesby@shakespeare.lit/laptop'
type='unavailable'>
<x xmlns="http://jabber.org/protocol/mmog#user'>
<item affiliation='none' role='none' />
<status code='110"'/>
<status code='332"'/>
</xX>
</presence>

176

12. Status Codes

Massively Multiplayer Online Gaming uses a <status/> element (specifically, the 'code' attribute of the
<status/> element) to communicate information about a user’s status in a room. Over time, the number of
status codes has grown quite large, and new status codes continue to be requested of the author. Therefore,
these codes are now documented in a registry maintained by the XMPP Registrar. For details, refer to the
Status Codes Registry section of this document.

Note: In general, MMOG status codes tend to follow the "philosophy" of status codes that is
implicit in RFC 2616 and RFC 1893 in the following groups:

* 1xx codes are informational codes

¢ 2xx codes specify that it is fine to continue

* 3xx codes specify redirects such as being kicked or banned
* x3x codes refer to system status

e x7x codes refer to security or policy matters, etc.

Note: If the MMOG protocol were being designed today, it would specify a more flexible,
XML-friendly approach rather than hardcoded status numbers; however, at this point the
pain of changing the status reporting system would be greater than the benefit of doing so,
which is why the status code numbers remain in use. A future version of this document may
define a more XMPP-like approach to status conditions, retaining the code numbers but
supplementing them with more descriptive child elements as is done in RFC 6120.

13. Internationalization Considerations

As specified in RFC 6120, XMPP entities (including MMOG rooms and MMOG services) SHOULD respect the
value of the 'xml:lang' attribute provided with any given stanza. However, simultaneous translation of
groupchat messages is out of scope for this document (see Language Translation (XEP-0171)).

The status and error codes defined herein enable a client implementation to present a localized interface;
however, definition of the localized text strings for any given language community is out of scope for this
document.

Although the labels for various data form fields are shown here in English, MMOG clients SHOULD present
localized text for these fields rather than the English text.

Nicknames can contain virtually any Unicode character. This introduces the possibility of nick spoofing; see
RFC 6122 for a description of related security considerations.

14. Security Considerations

177

14.1. User Authentication and Authorization

No room entrance authentication or authorization method more secure than cleartext passwords is defined
or required by this document. Although the risks involved can mitigated somewhat by the use of channel
encryption and strong authentication via TLS and SASL as described in RFC 6120, an entity that joins a room
has no way of knowing if its complete communication channel to the room is encrypted (thereby protecting
the plaintext password). A future specification might define an XMPP profile of SASL for use with MMOG,
but currently there is no such specification.

14.2. End-to-End Encryption

No end-to-end message or session encryption method is specified herein. Users SHOULD NOT trust a service
to keep secret any text sent through a room. A future specification might define a method for end-to-end
encryption of MMOG traffic, but currently there is no such specification.

14.3. Privacy

Depending on room configuration, a room might publicly log all discussions held in the room. A service
MUST warn the user that the room is publicly logged by returning a status code of "170" with the user’s initial
presence, and the user’s client MUST warn the user if the room discussion is logged (a user’s client SHOULD
also query the room for its configuration prior to allowing the user to enter in order to "pre-discover"
whether the room is logged). A client MUST also warn the user if the room’s configuration is subsequently
modified to allow roomlogging (which the client will discover when the room sends status code 170).

Note: In-room history is different from public room logging, and naturally a room cannot
effectively prevent occupants from separately maintaining their own room logs, which may
become public; users SHOULD exercise due caution and consider any room discussions to be
effectively public.

14.4. Information Leaks

The "roominfo" data form used in extended service discovery can result in information leaks, e.g., the
current discussion topic (via the "roominfo_subject" field). The same is true of service discovery items
(disco#items) requests from outside the room (which could be used to discover the list of room occupants).

Implementations and deployments are advised to carefully consider the possibility that this information
might be leaked, and to turn off information sharing by default for sensitive data.

14.5. Anonymity

Depending on room configuration, a room might expose each occupant’s real JID to other occupants (if the
room is non-anonymous). If real JIDs are exposed to all occupants in the room, the service MUST warn the
user by returning a status code of "100" with the user’s initial presence, and the user’s client MUST warn the
user (a user’s client SHOULD also query the room for its configuration prior to allowing the user to enter in
order to "pre-discover" whether real JIDs are exposed in the room). A client MUST also warn the user if the
room’s configuration is modified from semi-anonymous to non-anonymous (which the client will discover
when the room sends status code 172).

178

14.6. Denial of Service

Public MMOG rooms can be subject to a number of attacks, most of which reduce to denial of service attacks.
Such attacks include but are not limited to:

1. Stuffing the room with a large number of illegitimate occupants and therefore preventing legitimate
users from joining the room.

2. Sending abusive messages and then leaving the room before a kick or ban can be applied; such abusive
messages include but are not limited to large messages that prevent participants from following the
conversation thread or room history, personal attacks on participants (especially room administrators
and moderators), offensive text, and links to spam sites.

3. Making rapid and repeated presence changes.

4. Using long nicknames to route around lack of voice.

5. Abusing the room administrators or other room occupants.

6. Registering multiple nicknames across a service and therefore denying the use of those nicknames.

7. Mimicking another occupant’s roomnick (e.g., by adding a space at the end or substituting visually

similar characters), then sending messages from that roomnick in an effort to confuse the occupants.

These attacks can be mitigated but not completely prevented through the liberal use of administrative
actions such as banning, the presence of automated room bots with admin status, implementation of
intelligent content filtering, checking the IP addresses of connected users (not always possible in a
distributed system), applying voice rules to presence as well as messaging, matching room nicks using more
stringent rules than the Resourceprep profile of stringprep, etc. However, experience has shown that it is
impossible to fully prevent attacks of this kind.

Public MMOG services also can be subject to attacks, such as creating a large number of rooms on a service,
leaving rooms in an unconfigured state, etc. Such service-level attacks can be mitigated by limiting the
number of rooms that any given non-adminstrative user can own, deleting rooms if they remain in the
unconfigured state for too long, etc.

14.7. Other Considerations

See Delayed Delivery (XEP-0203) for security considerations regarding the inclusion and processing of
delayed delivery notations.

15. IANA Considerations

This document requires no interaction with the Internet Assigned Numbers Authority (IANA) (N.B.).

16. XMPP Registrar Considerations

The XMPP Registrar (N.B.) includes the following information in its registries.

16.1. Protocol Namespaces

The XMPP Registrar includes the following MMOG-related namespaces in its registry of protocol
namespaces at <https://xmpp.org/registrar/namespaces.html>:

* http://jabber.org/protocol/mmog

179

https://www.iana.org/
https://xmpp.org/registrar
https://xmpp.org/registrar/namespaces.html

http://jabber.org/protocol/mmog#user
* http://jabber.org/protocol/mmog#admin

¢ http://jabber.org/protocol/mmog#owner

16.2. Service Discovery Category/Type

A Massively Multiplayer Online Gaming service or room is identified by the "game" category and the "multi-

user” type within Service Discovery.

16.3. Service Discovery Features

There are many features related to an MMOG service or room that can be discovered by means of Service
Discovery. The most fundamental of these is the 'http://jabber.org/protocol/mmog' namespace. In addition,
an MMOG room SHOULD provide information about the specific room features it implements, such as

password protection and room moderation.

180

Registry Submission

<var>
<name>http://jabber.org/protocol/mmog#register</name>
<desc>Support for the mmog#register FORM_TYPE</desc>
<doc>XEP-xxxx</doc>
</var>
<var>
<name>http://jabber.org/protocol/mmog#roomconfig</name>
<desc>Support for the mmog#roomconfig FORM_TYPE</desc>
<doc>XEP-xxxx</doc>
</var>
<var>
<name>http://jabber.org/protocol/mmog#roominfo</name>
<desc>Support for the mmog#roominfo FORM_TYPE</desc>
<doc>XEP-xxxx</doc>
</var>
<var>
<name>http://jabber.org/protocol/mmog#stable_id</name>
<desc>This MMOG will reflect the original message 'id' in 'groupchat' messages.</desc>
<doc>XEP-xxxx</doc>
</var>
<var>
<name>muc_hidden</name>
<desc>Hidden room in Massively Multiplayer Online Gaming (MMOG)</desc>
<doc>XEP-xxxx</doc>
</var>
<var>
<name>muc_membersonly</name>
<desc>Members-only room in Massively Multiplayer Online Gaming (MMOG)</desc>
<doc>XEP-xxxx</doc>
</var>
<var>
<name>muc_moderated</name>
<desc>Moderated room in Massively Multiplayer Online Gaming (MMOG)</desc>
<doc>XEP-xxxx</doc>
</var>
<var>
<name>muc_nonanonymous</name>
<desc>Non-anonymous room in Massively Multiplayer Online Gaming (MMOG)</desc>
<doc>XEP-xxxx</doc>
</var>
<var>
<name>muc_open</name>
<desc>Open room in Massively Multiplayer Online Gaming (MMOG)</desc>
<doc>XEP-xxxx</doc>
</var>
<var>
<name>muc_passwordprotected</name>
<desc>Password-protected room in Massively Multiplayer Online Gaming (MMOG)</desc>
<doc>XEP-xxxx</doc>
</var>
<var>
<name>muc_persistent</name>
<desc>Persistent room in Massively Multiplayer Online Gaming (MMOG)</desc>
<doc>XEP-xxxx</doc>
</var>
<var>
<name>muc_public</name>
<desc>Public room in Massively Multiplayer Online Gaming (MMOG)</desc>
<doc>XEP-xxxx</doc>

181

16.4. Well-Known Service Discovery Nodes

The well-known Service Discovery node 'http://jabber.org/protocol/mmog#rooms' enables discovery of the
rooms in which a user is an occupant.

The well-known Service Discovery node 'x-roomuser-item' enables a user to discover his or her registered
roomnick from outside the room.

The well-known Service Discovery node 'http://jabber.org/protocol/mmog#traffic' enables discovery of the
namespaces that are allowed in traffic sent through a room (see the Allowable Traffic section of this
document).

16.5. Field Standardization

Field Standardization for Data Forms (XEP-0068) defines a process for standardizing the fields used within
Data Forms qualified by a particular FORM_TYPE. Within MMOG, there are four uses of such forms:

1. Room registration (the "mmog#register" FORM_TYPE);
2. Requesting voice and approving voice requests ("mmog#request”);
3. Room configuration ("mmog#roomconfig");

4. Service discovery extensions for room information ("mmog#roominfo").

The reserved fields are defined below.

182

16.5.1. mmog#register FORM_TYPE
Registry Submission

<form_type>
<name>http://jabber.org/protocol/mmog#register</name>
<doc>XEP-xxxx</doc>
<desc>
Forms enabling user registration with a
Massively Multiplayer Online Gaming (MMOG) room or admin approval
of user registration requests.
</desc>
<field
var="mmog#register_allow'’
type="boolean’
label="Allow this person to register with the room?'/>
<field
var="mmog#register_email’
type="text-single'
label="Email Address'/>
<field
var="mmog#register_faqgentry'
type="text-multi’
label="FAQ Entry'/>
<field
var="'mmog#register_first'
type="text-single’
label="Given Name'/>
<field
var="'mmog#register_last'
type="'text-single'
label="Family Name'/>
<field
var="mmog#register_roomnick'
type="'text-single'
label="Desired Nickname'/>
<field
var="'mmog#register_url'
type='text-single'
label="A Web Page'/>
</form_type>

183

16.5.2. mmog#request FORM_TYPE
Registry Submission

<form_type>
<name>http://jabber.org/protocol/mmog#request</name>
<doc>XEP-xxxx</doc>
<desc>
Forms enabling voice requests in a
Massively Multiplayer Online Gaming (MMOG) room or admin
approval of such requests.
</desc>
<field var="mmog#role'
type='list-single’
label="Requested role'/>
<field var="mmog#jid'
type='jid-single’
label="'User ID'/>
<field var="mmog#roomnick'
type="'text-single’
label="Room Nickname'/>
<field var='mmog#request_allow'
type="'boolean"’
label="Whether to grant voice'/>
</form_type>

184

16.5.3. mmog#roomconfig FORM_TYPE

185

	Contents at a Glance
	Document History
	Preface
	Basic Standards
	Glossary of Terms
	Bibliography

